110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

Hybridization of evolutionary algorithms is getting popular due to their capabilities in handling several real world problems involving complexity, noisy environment, imprecision, uncertainty and vagueness. This edited volume is targeted to present the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". This book deals with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. This volume comprises of 14 chapters including an introductory chapter giving the fundamental…mehr

Produktbeschreibung
Hybridization of evolutionary algorithms is getting popular due to their capabilities in handling several real world problems involving complexity, noisy environment, imprecision, uncertainty and vagueness. This edited volume is targeted to present the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". This book deals with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. This volume comprises of 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Autorenporträt
Dr. Ajith Abraham is Director of the Machine Intelligence Research (MIR) Labs, a global network of research laboratories with headquarters near Seattle, WA, USA. He is an author/co-author of more than 750 scientific publications. He is founding Chair of the International Conference of Computational Aspects of Social Networks (CASoN), Chair of IEEE Systems Man and Cybernetics Society Technical Committee on Soft Computing (since 2008), and a Distinguished Lecturer of the IEEE Computer Society representing Europe (since 2011).