Joe S Depner, Todd C Rasmussen
Hydrodynamics of Time-Periodic Groundwater Flow
Diffusion Waves in Porous Media
Joe S Depner, Todd C Rasmussen
Hydrodynamics of Time-Periodic Groundwater Flow
Diffusion Waves in Porous Media
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
"This works is a co-publication between the American Geophysical Union and John Wiley & Sons, Inc."
Andere Kunden interessierten sich auch für
- Harold L LevinThe Earth Through Time155,99 €
- Recent Advances in Problems of Flow and Transport in Porous Media74,99 €
- Paul L YoungerGroundwater in the Environment109,99 €
- Faults and Subsurface Fluid Flow in the Shallow Crust62,99 €
- Geomorphology and Groundwater517,99 €
- L. EskolaGeophysical Interpretation Using Integral Equations59,99 €
- Huijun YangWave Packets and Their Bifurcations in Geophysical Fluid Dynamics125,99 €
-
-
-
"This works is a co-publication between the American Geophysical Union and John Wiley & Sons, Inc."
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 324
- Erscheinungstermin: 19. Dezember 2016
- Englisch
- Abmessung: 279mm x 213mm x 23mm
- Gewicht: 953g
- ISBN-13: 9781119133940
- ISBN-10: 1119133947
- Artikelnr.: 43597755
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 324
- Erscheinungstermin: 19. Dezember 2016
- Englisch
- Abmessung: 279mm x 213mm x 23mm
- Gewicht: 953g
- ISBN-13: 9781119133940
- ISBN-10: 1119133947
- Artikelnr.: 43597755
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Todd Rasmussen is a Professor of Hydrology and Water Resources at the University of Georgia (UGA). He is a member of the Faculty of Water Resources, the Faculty of Engineering, and the Academy of the Environment at UGA. He is an associate editor for the Journal of Hydrology, and has been an associate editor for Water Resources Research and Hydrogeology Journal. He received his PhD from the Department of Hydrology and Water Resources, College of Engineering and Mines, at the University of Arizona in 1988. His publications focus on uid ow and contaminant transport through surface and subsurface environments, including the physical, chemical, mathematical, and statistical description and quantification of hydrologic processes. He was a co-author of the AGU Geophysical Monograph 42 (Evans et al., 2001) as well as multiple journal articles specifically related to subsurface periodic behavior (Toll and Rasmussen, 2007; Rasmussen and Mote, 2007; Rasmussen et al., 2003). Joe Depner graduated with an M.S. from the Department of Hydrology and Water Resources at the University of Arizona in 1985. His thesis topic was Estimation of the three-dimensional anisotropic spatial covariance of log permeability using single-hole and cross-hole packer test data from fractured granites, under the direction of Professor Shlomo P. Neuman, which was subsequently published (Neuman and Depner, 1988). He has also published on the topic of periodic flow in groundwater (Depner, 2000). He has worked professionally for multiple private consulting services and for Pacific Northwest National Laboratory in Hanford, WA.
Preface vii
Notation xi
Acknowledgments xvii
Part I: Introduction 1
1 Introduction 3
Part II: Problem Definition 7
2 Initial Boundary Value Problem for Hydraulic Head 9
3 Hydraulic Head Components and Their IBVPs 13
4 Periodic Transient Components 15
5 BVP for Harmonic Constituents 21
6 Polar Form of Space BVP 29
7 Complex-Variable Form of Space BVP 37
8 Comparison of Space BVP Forms 43
Part III: Elementary Examples 45
9 Examples: 1D Flow in Ideal Media 47
10 Examples: 1D Flow in Exponential Media 63
11 Examples: 1D Flow in Power Law Media 89
12 Examples: 2D and 3D Flow in Ideal Media 95
13 Examples: Uniform-Gradient Flow 107
Part IV: Essential Concepts 121
14 Attenuation, Delay, and Gradient Collinearity 123
15 Time Variation of Specific-Discharge Constituent 131
Part V: Stationary Points 149
16 Stationary Points: Basic Concepts 151
17 Stationary Points: Amplitude and Phase 157
18 Flow Stagnation 171
Part VI: Wave Propagation 181
19 Harmonic, Hydraulic Head Waves 183
20 Wave Distortion 199
21 Waves in One Dimension 215
22 Wave Equation 225
Part VII: Energy Transport 231
23 Mechanical Energy of Groundwater 233
24 Mechanical Energy: Time Averages 239
25 Mechanical Energy of Single-Constituent Fields 249
Part VIII: Conclusion 261
26 Conclusion 263
Part IX: Appendices 269
A Hydraulic Head Components 271
B Useful Results from Trigonometry 273
C Linear Transformation of Space Coordinates 275
D Complex Variables 281
E Kelvin Functions 283
Bibliography 291
Index 295
Notation xi
Acknowledgments xvii
Part I: Introduction 1
1 Introduction 3
Part II: Problem Definition 7
2 Initial Boundary Value Problem for Hydraulic Head 9
3 Hydraulic Head Components and Their IBVPs 13
4 Periodic Transient Components 15
5 BVP for Harmonic Constituents 21
6 Polar Form of Space BVP 29
7 Complex-Variable Form of Space BVP 37
8 Comparison of Space BVP Forms 43
Part III: Elementary Examples 45
9 Examples: 1D Flow in Ideal Media 47
10 Examples: 1D Flow in Exponential Media 63
11 Examples: 1D Flow in Power Law Media 89
12 Examples: 2D and 3D Flow in Ideal Media 95
13 Examples: Uniform-Gradient Flow 107
Part IV: Essential Concepts 121
14 Attenuation, Delay, and Gradient Collinearity 123
15 Time Variation of Specific-Discharge Constituent 131
Part V: Stationary Points 149
16 Stationary Points: Basic Concepts 151
17 Stationary Points: Amplitude and Phase 157
18 Flow Stagnation 171
Part VI: Wave Propagation 181
19 Harmonic, Hydraulic Head Waves 183
20 Wave Distortion 199
21 Waves in One Dimension 215
22 Wave Equation 225
Part VII: Energy Transport 231
23 Mechanical Energy of Groundwater 233
24 Mechanical Energy: Time Averages 239
25 Mechanical Energy of Single-Constituent Fields 249
Part VIII: Conclusion 261
26 Conclusion 263
Part IX: Appendices 269
A Hydraulic Head Components 271
B Useful Results from Trigonometry 273
C Linear Transformation of Space Coordinates 275
D Complex Variables 281
E Kelvin Functions 283
Bibliography 291
Index 295
Preface vii
Notation xi
Acknowledgments xvii
Part I: Introduction 1
1 Introduction 3
Part II: Problem Definition 7
2 Initial Boundary Value Problem for Hydraulic Head 9
3 Hydraulic Head Components and Their IBVPs 13
4 Periodic Transient Components 15
5 BVP for Harmonic Constituents 21
6 Polar Form of Space BVP 29
7 Complex-Variable Form of Space BVP 37
8 Comparison of Space BVP Forms 43
Part III: Elementary Examples 45
9 Examples: 1D Flow in Ideal Media 47
10 Examples: 1D Flow in Exponential Media 63
11 Examples: 1D Flow in Power Law Media 89
12 Examples: 2D and 3D Flow in Ideal Media 95
13 Examples: Uniform-Gradient Flow 107
Part IV: Essential Concepts 121
14 Attenuation, Delay, and Gradient Collinearity 123
15 Time Variation of Specific-Discharge Constituent 131
Part V: Stationary Points 149
16 Stationary Points: Basic Concepts 151
17 Stationary Points: Amplitude and Phase 157
18 Flow Stagnation 171
Part VI: Wave Propagation 181
19 Harmonic, Hydraulic Head Waves 183
20 Wave Distortion 199
21 Waves in One Dimension 215
22 Wave Equation 225
Part VII: Energy Transport 231
23 Mechanical Energy of Groundwater 233
24 Mechanical Energy: Time Averages 239
25 Mechanical Energy of Single-Constituent Fields 249
Part VIII: Conclusion 261
26 Conclusion 263
Part IX: Appendices 269
A Hydraulic Head Components 271
B Useful Results from Trigonometry 273
C Linear Transformation of Space Coordinates 275
D Complex Variables 281
E Kelvin Functions 283
Bibliography 291
Index 295
Notation xi
Acknowledgments xvii
Part I: Introduction 1
1 Introduction 3
Part II: Problem Definition 7
2 Initial Boundary Value Problem for Hydraulic Head 9
3 Hydraulic Head Components and Their IBVPs 13
4 Periodic Transient Components 15
5 BVP for Harmonic Constituents 21
6 Polar Form of Space BVP 29
7 Complex-Variable Form of Space BVP 37
8 Comparison of Space BVP Forms 43
Part III: Elementary Examples 45
9 Examples: 1D Flow in Ideal Media 47
10 Examples: 1D Flow in Exponential Media 63
11 Examples: 1D Flow in Power Law Media 89
12 Examples: 2D and 3D Flow in Ideal Media 95
13 Examples: Uniform-Gradient Flow 107
Part IV: Essential Concepts 121
14 Attenuation, Delay, and Gradient Collinearity 123
15 Time Variation of Specific-Discharge Constituent 131
Part V: Stationary Points 149
16 Stationary Points: Basic Concepts 151
17 Stationary Points: Amplitude and Phase 157
18 Flow Stagnation 171
Part VI: Wave Propagation 181
19 Harmonic, Hydraulic Head Waves 183
20 Wave Distortion 199
21 Waves in One Dimension 215
22 Wave Equation 225
Part VII: Energy Transport 231
23 Mechanical Energy of Groundwater 233
24 Mechanical Energy: Time Averages 239
25 Mechanical Energy of Single-Constituent Fields 249
Part VIII: Conclusion 261
26 Conclusion 263
Part IX: Appendices 269
A Hydraulic Head Components 271
B Useful Results from Trigonometry 273
C Linear Transformation of Space Coordinates 275
D Complex Variables 281
E Kelvin Functions 283
Bibliography 291
Index 295