23,99 €
inkl. MwSt.

Versandfertig in 2-4 Wochen
payback
12 °P sammeln
  • Broschiertes Buch

"For centuries, mathematicians have tried, and failed, to solve the zeta-3 problem. This problem is simple in its formulation, but remains unsolved to this day, despite the attempts of some of the world's greatest mathematicians to solve it. The problem can be stated as follows: is there a simple symbolic formula for the following sum: 1+(1/2)^3+(1/3)^3+(1/4)^3+...? Although it is possible to calculate the approximate numerical value of the sum (for those interested, it's 1.20205...), there is no known symbolic expression. A symbolic formula would not only provide an exact value for the sum,…mehr

Produktbeschreibung
"For centuries, mathematicians have tried, and failed, to solve the zeta-3 problem. This problem is simple in its formulation, but remains unsolved to this day, despite the attempts of some of the world's greatest mathematicians to solve it. The problem can be stated as follows: is there a simple symbolic formula for the following sum: 1+(1/2)^3+(1/3)^3+(1/4)^3+...? Although it is possible to calculate the approximate numerical value of the sum (for those interested, it's 1.20205...), there is no known symbolic expression. A symbolic formula would not only provide an exact value for the sum, but would allow for greater insight into its characteristics and properties. The answers to these questions are not of purely academic interest; the zeta-3 problem has close connections to physics, engineering, and other areas of mathematics. Zeta-3 arises in quantum electrodynamics and in number theory, for instance, and it is closely connected to the Riemann hypothesis. In In Pursuit of zeta-3, Paul Nahin turns his sharp, witty eye on the zeta-3 problem. He describes the problem's history, and provides numerous "challenge questions" to engage readers, along with Matlab code. Unlike other, similarly challenging problems, anyone with a basic mathematical background can understand the problem-making it an ideal choice for a pop math book"--
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Paul J. Nahin is the author of many popular math books, including How to Fall Slower Than Gravity, Dr. Euler's Fabulous Formula, and An Imaginary Tale (all Princeton). He is professor emeritus of electrical engineering at the University of New Hampshire and received the 2017 Chandler Davis Prize for Excellence in Expository Writing in Mathematics. He lives in Exeter, New Hampshire.