P. M. Gresho, R. L. Sani
Incompressible Flow and the Finite Element Method, Volume 1
Advection-Diffusion and Isothermal Laminar Flow
P. M. Gresho, R. L. Sani
Incompressible Flow and the Finite Element Method, Volume 1
Advection-Diffusion and Isothermal Laminar Flow
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Das umfangreiche Handbuch zur Anwendung finiter Elemente auf die inkompressible Strömung: Jetzt neu als preiswerte Paperback-Ausgabe! Ausgehend von einer ausführlichen Erläuterung der theoretischen Grundlagen werden geeignete numerische Methoden zur Lösung vielfältiger Strömungsprobleme abgeleitet. Die in der Praxis außerordentlich wichtigen Anfangs- und Randbedingungen werden besonders sorgfältig behandelt. Nicht zuletzt finden sich Angaben zur bisher oft kontrovers diskutierten Rolle des Druckes. (06/00)
Andere Kunden interessierten sich auch für
- P. M. GreshoIncompressible Flow and the Finite Element Method, Volume 2225,99 €
- Salomon LevyTwo-Phase Flow in Complex Systems185,99 €
- Charles HirschNumerical Computation of Internal and External Flows, Volume 2330,99 €
- Charles HirschNumerical Computation of Internal and External Flows, Volume 1362,99 €
- Eleuterio F. ToroShock-Capturing Methods for Free-Surface Shallow Flows330,99 €
- Olek C ZienkiewiczThe Finite Element Method: Its Basis and Fundamentals161,99 €
- Philippe CoussotRheometry of Pastes, Suspensions, and Granular Materials178,99 €
-
-
-
Das umfangreiche Handbuch zur Anwendung finiter Elemente auf die inkompressible Strömung: Jetzt neu als preiswerte Paperback-Ausgabe! Ausgehend von einer ausführlichen Erläuterung der theoretischen Grundlagen werden geeignete numerische Methoden zur Lösung vielfältiger Strömungsprobleme abgeleitet. Die in der Praxis außerordentlich wichtigen Anfangs- und Randbedingungen werden besonders sorgfältig behandelt. Nicht zuletzt finden sich Angaben zur bisher oft kontrovers diskutierten Rolle des Druckes. (06/00)
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 480
- Erscheinungstermin: 22. Juni 2000
- Englisch
- Abmessung: 244mm x 170mm x 25mm
- Gewicht: 808g
- ISBN-13: 9780471492498
- ISBN-10: 0471492493
- Artikelnr.: 09397916
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 480
- Erscheinungstermin: 22. Juni 2000
- Englisch
- Abmessung: 244mm x 170mm x 25mm
- Gewicht: 808g
- ISBN-13: 9780471492498
- ISBN-10: 0471492493
- Artikelnr.: 09397916
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
P. M. Gresho is the author of Incompressible Flow and the Finite Element Method, Volume 1: Advection-Diffusion and Isothermal Laminar Flow, published by Wiley. R. L. Sani is the author of Incompressible Flow and the Finite Element Method, Volume 1: Advection-Diffusion and Isothermal Laminar Flow, published by Wiley.
Volume 1
Preface xv
Glossary of Abbreviations xix
1 Introduction 1
1.1 Introduction 1
1.2 Incompressible Flow 3
1.3 The Finite Element Method 6
1.4 Incompressible Flow and the Finite Element Method 11
1.5 Overview of this Volume 12
1.6 Some Subjective Discussion 16
1.7 Why Finite Elements? Why Not Finite Volumes? 17
2 The Advection-Diffusion Equation 21
2.1 The Continuum Equation 21
2.2 The Finite Element Equations/Discretization of the Weak Form 35
2.3 Same Semi-Discrete Equations 56
2.4 Open Boundary Conditions (OBC's) 91
2.5 Same Non-Galerkin Results 105
2.6 Dispersion, Dissipation, Phase Speed, Group
2.7 Time Integration 230
2.8 Additional Numerical Examples 342
Appendix 1 Some Element Matrices 357
Appendix 2 Further Comparison of Finite Elements and Finite Volumes 365
Appendix 3 Scalar Projections, Orthogonal and Not-and Projection Methods
379
References 423
Author Index Ai-1
Subject Index Si-1
Volume 2
Glossary of Abbreviations xv
Preface and Introduction xvii
Preface xvii
Introduction xx
Incompressible Flow xxii
The Finite Element Method xxv
Incompressible Flow and the Finite Element Method xxvi
Overview of this Volume xxxi
Some Subjective Discussion xxxv
Why Finite Elements? Why Not Finite Volumes? xxxvi
3 The Navier-Stokes Equations 447
3.1 Notational Introduction 447
3.2 The Continuum Equations (The PDE's) 450
3.3 Alternate Forms of the Viscous Term 452
3.4 Alternate Forms of the Non-Linear Term 454
3.5 Derived Equations 457
3.6 Alternate Statements of the NS Equations 461
3.7 Special Cases of Interest 463
3.8 Boundary Conditions 470
3.9 Initial Conditions (and Well-Posedness) 487
3.10 Interim Summary 493
3.11 Global Conservation Laws 502
3.12 Weak Forms of the PDE's/Natural Boundary Conditions (NBC's) 508
3.13 The Finite Element Equations/Discretization of the Weak Form 528
3.14 A Control Volume Finite Element Method 712
3.15 Variational Principles for Potential and Stokes Flow 716
3.16 Solution Methods for the Semi-Discretized Time-Dependent (and Steady)
Equations 729
3.17 Aliasing and Aliasing Instability, Linear and Non-Linear 876
3.18 A New Look al Two Old Finite Difference Methods 880
3.19 Numerical Example-Impulsive Start 884
3.20 Closure: Some Additional Remarks on the Pressure 934
4 Derived Quantities 937
4.1 Introduction 937
4.2 Two Dimensions 938
4.3 Three Dimensions 961
4.3.1 Vorticity 961
4.3.2 Helicity Density 961
Appendix 4 Some More Element Matrices 963
Appendix 5 Vector Projections, Orthogonal and Not-and Projection Methods
967
References 989
Author Index Ai-1
Subject Index Si-1
Preface xv
Glossary of Abbreviations xix
1 Introduction 1
1.1 Introduction 1
1.2 Incompressible Flow 3
1.3 The Finite Element Method 6
1.4 Incompressible Flow and the Finite Element Method 11
1.5 Overview of this Volume 12
1.6 Some Subjective Discussion 16
1.7 Why Finite Elements? Why Not Finite Volumes? 17
2 The Advection-Diffusion Equation 21
2.1 The Continuum Equation 21
2.2 The Finite Element Equations/Discretization of the Weak Form 35
2.3 Same Semi-Discrete Equations 56
2.4 Open Boundary Conditions (OBC's) 91
2.5 Same Non-Galerkin Results 105
2.6 Dispersion, Dissipation, Phase Speed, Group
2.7 Time Integration 230
2.8 Additional Numerical Examples 342
Appendix 1 Some Element Matrices 357
Appendix 2 Further Comparison of Finite Elements and Finite Volumes 365
Appendix 3 Scalar Projections, Orthogonal and Not-and Projection Methods
379
References 423
Author Index Ai-1
Subject Index Si-1
Volume 2
Glossary of Abbreviations xv
Preface and Introduction xvii
Preface xvii
Introduction xx
Incompressible Flow xxii
The Finite Element Method xxv
Incompressible Flow and the Finite Element Method xxvi
Overview of this Volume xxxi
Some Subjective Discussion xxxv
Why Finite Elements? Why Not Finite Volumes? xxxvi
3 The Navier-Stokes Equations 447
3.1 Notational Introduction 447
3.2 The Continuum Equations (The PDE's) 450
3.3 Alternate Forms of the Viscous Term 452
3.4 Alternate Forms of the Non-Linear Term 454
3.5 Derived Equations 457
3.6 Alternate Statements of the NS Equations 461
3.7 Special Cases of Interest 463
3.8 Boundary Conditions 470
3.9 Initial Conditions (and Well-Posedness) 487
3.10 Interim Summary 493
3.11 Global Conservation Laws 502
3.12 Weak Forms of the PDE's/Natural Boundary Conditions (NBC's) 508
3.13 The Finite Element Equations/Discretization of the Weak Form 528
3.14 A Control Volume Finite Element Method 712
3.15 Variational Principles for Potential and Stokes Flow 716
3.16 Solution Methods for the Semi-Discretized Time-Dependent (and Steady)
Equations 729
3.17 Aliasing and Aliasing Instability, Linear and Non-Linear 876
3.18 A New Look al Two Old Finite Difference Methods 880
3.19 Numerical Example-Impulsive Start 884
3.20 Closure: Some Additional Remarks on the Pressure 934
4 Derived Quantities 937
4.1 Introduction 937
4.2 Two Dimensions 938
4.3 Three Dimensions 961
4.3.1 Vorticity 961
4.3.2 Helicity Density 961
Appendix 4 Some More Element Matrices 963
Appendix 5 Vector Projections, Orthogonal and Not-and Projection Methods
967
References 989
Author Index Ai-1
Subject Index Si-1
Volume 1
Preface xv
Glossary of Abbreviations xix
1 Introduction 1
1.1 Introduction 1
1.2 Incompressible Flow 3
1.3 The Finite Element Method 6
1.4 Incompressible Flow and the Finite Element Method 11
1.5 Overview of this Volume 12
1.6 Some Subjective Discussion 16
1.7 Why Finite Elements? Why Not Finite Volumes? 17
2 The Advection-Diffusion Equation 21
2.1 The Continuum Equation 21
2.2 The Finite Element Equations/Discretization of the Weak Form 35
2.3 Same Semi-Discrete Equations 56
2.4 Open Boundary Conditions (OBC's) 91
2.5 Same Non-Galerkin Results 105
2.6 Dispersion, Dissipation, Phase Speed, Group
2.7 Time Integration 230
2.8 Additional Numerical Examples 342
Appendix 1 Some Element Matrices 357
Appendix 2 Further Comparison of Finite Elements and Finite Volumes 365
Appendix 3 Scalar Projections, Orthogonal and Not-and Projection Methods
379
References 423
Author Index Ai-1
Subject Index Si-1
Volume 2
Glossary of Abbreviations xv
Preface and Introduction xvii
Preface xvii
Introduction xx
Incompressible Flow xxii
The Finite Element Method xxv
Incompressible Flow and the Finite Element Method xxvi
Overview of this Volume xxxi
Some Subjective Discussion xxxv
Why Finite Elements? Why Not Finite Volumes? xxxvi
3 The Navier-Stokes Equations 447
3.1 Notational Introduction 447
3.2 The Continuum Equations (The PDE's) 450
3.3 Alternate Forms of the Viscous Term 452
3.4 Alternate Forms of the Non-Linear Term 454
3.5 Derived Equations 457
3.6 Alternate Statements of the NS Equations 461
3.7 Special Cases of Interest 463
3.8 Boundary Conditions 470
3.9 Initial Conditions (and Well-Posedness) 487
3.10 Interim Summary 493
3.11 Global Conservation Laws 502
3.12 Weak Forms of the PDE's/Natural Boundary Conditions (NBC's) 508
3.13 The Finite Element Equations/Discretization of the Weak Form 528
3.14 A Control Volume Finite Element Method 712
3.15 Variational Principles for Potential and Stokes Flow 716
3.16 Solution Methods for the Semi-Discretized Time-Dependent (and Steady)
Equations 729
3.17 Aliasing and Aliasing Instability, Linear and Non-Linear 876
3.18 A New Look al Two Old Finite Difference Methods 880
3.19 Numerical Example-Impulsive Start 884
3.20 Closure: Some Additional Remarks on the Pressure 934
4 Derived Quantities 937
4.1 Introduction 937
4.2 Two Dimensions 938
4.3 Three Dimensions 961
4.3.1 Vorticity 961
4.3.2 Helicity Density 961
Appendix 4 Some More Element Matrices 963
Appendix 5 Vector Projections, Orthogonal and Not-and Projection Methods
967
References 989
Author Index Ai-1
Subject Index Si-1
Preface xv
Glossary of Abbreviations xix
1 Introduction 1
1.1 Introduction 1
1.2 Incompressible Flow 3
1.3 The Finite Element Method 6
1.4 Incompressible Flow and the Finite Element Method 11
1.5 Overview of this Volume 12
1.6 Some Subjective Discussion 16
1.7 Why Finite Elements? Why Not Finite Volumes? 17
2 The Advection-Diffusion Equation 21
2.1 The Continuum Equation 21
2.2 The Finite Element Equations/Discretization of the Weak Form 35
2.3 Same Semi-Discrete Equations 56
2.4 Open Boundary Conditions (OBC's) 91
2.5 Same Non-Galerkin Results 105
2.6 Dispersion, Dissipation, Phase Speed, Group
2.7 Time Integration 230
2.8 Additional Numerical Examples 342
Appendix 1 Some Element Matrices 357
Appendix 2 Further Comparison of Finite Elements and Finite Volumes 365
Appendix 3 Scalar Projections, Orthogonal and Not-and Projection Methods
379
References 423
Author Index Ai-1
Subject Index Si-1
Volume 2
Glossary of Abbreviations xv
Preface and Introduction xvii
Preface xvii
Introduction xx
Incompressible Flow xxii
The Finite Element Method xxv
Incompressible Flow and the Finite Element Method xxvi
Overview of this Volume xxxi
Some Subjective Discussion xxxv
Why Finite Elements? Why Not Finite Volumes? xxxvi
3 The Navier-Stokes Equations 447
3.1 Notational Introduction 447
3.2 The Continuum Equations (The PDE's) 450
3.3 Alternate Forms of the Viscous Term 452
3.4 Alternate Forms of the Non-Linear Term 454
3.5 Derived Equations 457
3.6 Alternate Statements of the NS Equations 461
3.7 Special Cases of Interest 463
3.8 Boundary Conditions 470
3.9 Initial Conditions (and Well-Posedness) 487
3.10 Interim Summary 493
3.11 Global Conservation Laws 502
3.12 Weak Forms of the PDE's/Natural Boundary Conditions (NBC's) 508
3.13 The Finite Element Equations/Discretization of the Weak Form 528
3.14 A Control Volume Finite Element Method 712
3.15 Variational Principles for Potential and Stokes Flow 716
3.16 Solution Methods for the Semi-Discretized Time-Dependent (and Steady)
Equations 729
3.17 Aliasing and Aliasing Instability, Linear and Non-Linear 876
3.18 A New Look al Two Old Finite Difference Methods 880
3.19 Numerical Example-Impulsive Start 884
3.20 Closure: Some Additional Remarks on the Pressure 934
4 Derived Quantities 937
4.1 Introduction 937
4.2 Two Dimensions 938
4.3 Three Dimensions 961
4.3.1 Vorticity 961
4.3.2 Helicity Density 961
Appendix 4 Some More Element Matrices 963
Appendix 5 Vector Projections, Orthogonal and Not-and Projection Methods
967
References 989
Author Index Ai-1
Subject Index Si-1