Few manufacturing processes are so standardised, automated, and rigidly controlled that the product can be guaranteed perfect over large-scale mass production. If structures are to be constructed to meet design requirements and materials are to be used economically and efficiently, some form of testing of the finished product will almost certainly be necessary. Whenever production depends on human skills, human errors creep in and faulty products occasionally occur. With some small products, samples of production can be extracted and physically tested to destruction without great cost losses;…mehr
Few manufacturing processes are so standardised, automated, and rigidly controlled that the product can be guaranteed perfect over large-scale mass production. If structures are to be constructed to meet design requirements and materials are to be used economically and efficiently, some form of testing of the finished product will almost certainly be necessary. Whenever production depends on human skills, human errors creep in and faulty products occasionally occur. With some small products, samples of production can be extracted and physically tested to destruction without great cost losses; proof tests can be done on a pressure vessel, or vibration testing can be carried out to simulate service conditions, but on many large structures such sampling or proof testing is virtually impossible. Also, if one postulates occasional human errors, sampling will not eliminate the defective items and on many critical components and structures 100 % inspection is often desirable. Non-destructive testing or inspection (NOT or NOI) are the terms used to describe a wide range of testing techniques designed to produce information about the condition of a specimen without doing any damage to it: i.e. after the testing the fitness of the specimen for use in service is unchanged.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Principles of Radiology.- 2. Basic Properties of Ionising Radiations.- 2.1. Nature of X-Rays and Gamma-Rays.- 2.2. Units.- 2.3. Atomic Structure.- 2.4. Generation of X-Rays.- 2.5. Gamma-Rays.- 2.6. Absorption.- 2.7. Absorption Coefficient.- 2.8. Absorption Curves.- 2.9. Scattered Radiation and Radiographic Sensitivity.- 3. X-Ray Sources.- 3.1. Introduction.- 3.2. The X-Ray Spectrum.- 3.3. X-Ray Tubes and Generators.- 3.4. X-Ray Generator Circuits.- 3.5. High Energy X-Ray Equipment.- 3.6. X-Ray Tube Mountings.- 3.7. Portable Tank-Type X-Ray Sets.- 3.8. Controls for X-Ray Equipment.- 3.9. Comparison of X-Ray Generators.- 4. Gamma-Ray Sources And Equipment.- 4.1. Radioactivity.- 4.2. Definitions.- 4.4. Specific Isotopes for Radiography.- 4.5. Radioactive Source-Handling Equipment.- 4.6. The Use of Gamma-Ray Sources.- 5. The Recording of Radiation.- 5.1. Introduction.- 5.2. The Photographic Effect.- 5.3. Ionisation.- 5.4. Scintillation Counters.- 5.5. Semiconductor Devices.- 5.6. Fluorescence.- 6. Radiographic Techniques-Principles.- 6.1. Introduction.- 6.2. Equipment Data.- 6.3. Image Parameters.- 6.4. Choice of Radiation Energy.- 6.5. Films and Intensifying Screens.- 6.6. Filtration.- 6.7. Masking.- 6.8. Scattered Radiation.- 6.9. Techniques to Cover a Range of Specimen Thickness (Thickness Latitude).- 6.10. Specimen Positioning.- 6.11. Marking: Identification.- 6.12. Other Practical Considerations.- 6.13. Special Techniques.- 7. Radiographic Techniques-Sensitivity.- 7.1. Introduction.- 7.2. Definition of Terms.- 7.3. Image Quality Indicators (IQI).- 7.4. Viewing Conditions.- 7.5. Codes of Recommended Good Practice.- 7.6. Special Techniques.- 8. Sensitivity Performance.- 8.1. Introduction.- 8.2. Attainable IQI Values.- 8.3. The Calculation of Detail Sensitivity.-8.4. Flaw Sensitivity.- 8.5. Defect Depth Determination.- 8.6. Radiographic Imaging Considered in Terms of Spatial Frequencies.- 8.7. Noise Limitations.- 8.8. Information Theory.- 8.9. Densitometrie Analysis.- 8.10. Reliability of Performance.- 9. Interpretation of Radiographs.- 9.1. Introduction.- 9.2. General Aspects.- 9.3. Weld Radiographs.- 9.4. Radiographs of Castings.- 9.5. Non-Metallic Materials.- 9.6. Reference Radiographs.- 9.7. Acceptance Standards for Defects.- 9.8. Assemblies.- 9.9. Reporting Results.- 9.10. Copying Radiographs.- 10. Safety Problems in Radiology.- 10.1. Introduction.- 10.2. Radiation Sources.- 10.3. Radiation Units.- 10.4. Permissible Dose Limits.- 10.5. Radiation Monitoring Equipment.- 10.6. Protection Data.- 10.7. Calculation of Protective Barrier Thicknesses.- 10.8. Gamma-Ray Source Containers.- 10.9. General Safety Requirements for Radiographic Laboratories.- 11. Fluoroscopy, Image Intensifiers and Television Systems.- 11.1. Introduction.- 11.2. Image Intensifier Tubes.- 11.3. Television-Fluoroscopic Systems Performance.- 11.4. Applications.- 11.5. Future Developments.- 12. Special Methods.- 12.1. Introduction.- 12.2. Neutron Radiography.- 12.3. Proton Radiography.- 12.4. Electron Radiography.- 12.5. Microradiography.- 12.6. Autoradiography.- 12.7. Flash Radiography.- 12.8. Radiometric Methods.- 12.9. Digitised Images: Image Processing.
Rezensionen
...provides very good knowledge for advanced personel in industrial radiology. The book is up to date and can be recommended for education and as a reference book. It should be on the book-shelf of each serious professional for NDT, since it answers most questions in daily life... - Materials and Corrosion
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497