Arjun K. Gupta, Bon K. Sy
Information-Statistical Data Mining
Warehouse Integration with Examples of Oracle Basics
Arjun K. Gupta, Bon K. Sy
Information-Statistical Data Mining
Warehouse Integration with Examples of Oracle Basics
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is written to introduce basic concepts, advanced research techniques, and practical solutions of data warehousing and data mining for hosting large data sets and EDA. This book is unique because it is one of the few in the forefront that attempts to bridge statistics and information theory through a concept of patterns. Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is designed for a professional audience composed of researchers and practitioners in industry.…mehr
Andere Kunden interessierten sich auch für
- Hans-Joachim Lenz / Reinhold Decker (eds.)Advances in Data Analysis111,99 €
- Topological and Statistical Methods for Complex Data125,99 €
- J.-L. StarckAstronomical Image and Data Analysis147,99 €
- Topological and Statistical Methods for Complex Data125,99 €
- Fuzzy Logic and Soft Computing110,99 €
- Computational Statistics38,99 €
- Sergej Nikolaevich ZhiganovProwedenie raschetow w MathCAD30,99 €
-
-
-
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is written to introduce basic concepts, advanced research techniques, and practical solutions of data warehousing and data mining for hosting large data sets and EDA. This book is unique because it is one of the few in the forefront that attempts to bridge statistics and information theory through a concept of patterns.
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science and engineering.
Information-Statistical Data Mining: Warehouse Integration with Examples of Oracle Basics is designed for a professional audience composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science and engineering.
Produktdetails
- Produktdetails
- The Springer International Series in Engineering and Computer Science 757
- Verlag: Springer / Springer US / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4613-4755-2
- Softcover reprint of the original 1st ed. 2004
- Seitenzahl: 316
- Erscheinungstermin: 4. Oktober 2012
- Englisch
- Abmessung: 235mm x 155mm x 18mm
- Gewicht: 486g
- ISBN-13: 9781461347552
- ISBN-10: 1461347556
- Artikelnr.: 39159313
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- The Springer International Series in Engineering and Computer Science 757
- Verlag: Springer / Springer US / Springer, Berlin
- Artikelnr. des Verlages: 978-1-4613-4755-2
- Softcover reprint of the original 1st ed. 2004
- Seitenzahl: 316
- Erscheinungstermin: 4. Oktober 2012
- Englisch
- Abmessung: 235mm x 155mm x 18mm
- Gewicht: 486g
- ISBN-13: 9781461347552
- ISBN-10: 1461347556
- Artikelnr.: 39159313
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1. Preview: Data Warehousing/Mining.- 1. What is Summary Information?.- 2. Data, Information Theory, Statistics.- 3. Data Warehousing/Mining Management.- 4. Architecture, Tools and Applications.- 5. Conceptual/Practical Mining Tools.- 6. Conclusion.- 2. Data Warehouse Basics.- 1. Methodology.- 2. Conclusion.- 3. CONCEPT OF PATTERNS & VISUALIZATION.- 1. Introduction.- Appendix: Word Problem Solution.- 4. Information Theory & Statistics.- 1. Introduction.- 2. Information Theory.- 3. Variable Interdependence Measure.- 4. Probability Model Comparison.- 5. Pearson's Chi-Square Statistic.- 5. Information and Statistics Linkage.- 1. Statistics.- 2. Concept Of Information.- 3. Information Theory And Statistics.- 4. Conclusion.- 6. Temporal-Spatial Data.- 1. Introduction.- 2. Temporal-Spatial Characteristics.- 3. Temporal-Spatial Data Analysis.- 4. Problem Formulation.- 5. Temperature Analysis Application.- 6. Discussion.- 7. Conclusion.- 7. Change Point Detection Techniques.- 1. Change Point Problem.- 2. Information Criterion Approach.- 3. Binary Segmentation Technique.- 4. Example.- 5. Summary.- 8. Statistical Association Patterns.- 1. Information-Statistical Association.- 2. Conclusion.- 9. Pattern Inference & Model Discovery.- 1. Introduction.- 2. Concept Of Pattern-Based Inference.- 3. Conclusion.- Appendix: Pattern Utility Illustration.- 10. Bayesian Nets & Model Generation.- 1. Preliminary Of Bayesian Networks.- 2. Pattern Synthesis for Model Learning.- 3. Conclusion.- 11. Pattern Ordering Inference: Part I.- 1. Pattern Order Inference Approach.- 2. Bayesian Net Probability Distribution.- 3. Bayesian Model: Pattern Embodiment.- 4. RLCM for Pattern Ordering.- 12. Pattern Ordering Inference: Part II.- 1. Ordering General Event Patterns.- 2. Conclusion.- Appendix I: 51Largest PR(ADHJBCEF % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBqj3BWbIqubWexLMBb50ujbqegm0B% 1jxALjharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr% Ffpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0F% irpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaa% GcbaWaa0aaaeaacaWGhbaaamaamaaabaGaamysaaaaaaa!3B22!$$ overline G underline I $$.- Appendix II: Ordering of PR(LI/SE). SE=F G I.- Appendix III.A: Evaluation of Method A.- Appendix III.B: Evaluation of Method B.- Appendix III.C: Evaluation of Method C.- 13. Case Study 1: Oracle Data Warehouse.- 1. Introduction.- 2. Background.- 3. Challenge.- 4. Illustrations.- 5. Conclusion.- Appendix I: Warehouse Data Dictionary.- 14. Case Study 2: Financial Data Analysis.- 1. The Data.- 2. Information Theoretic Approach.- 3. Data Analysis.- 4. Conclusion.- 15. Case Study 3: Forest Classification.- 1. Introduction.- 2. Classifier Model Derivation.- 3. Test Data Characteristics.- 4. Experimental Platform.- 5. Classification Results.- 6. Validation Stage.- 7. Effect of Mixed Data on Performance.- 8. Goodness Measure for Evaluation.- 9. Conclusion.- References.
1. Preview: Data Warehousing/Mining.- 1. What is Summary Information?.- 2. Data, Information Theory, Statistics.- 3. Data Warehousing/Mining Management.- 4. Architecture, Tools and Applications.- 5. Conceptual/Practical Mining Tools.- 6. Conclusion.- 2. Data Warehouse Basics.- 1. Methodology.- 2. Conclusion.- 3. CONCEPT OF PATTERNS & VISUALIZATION.- 1. Introduction.- Appendix: Word Problem Solution.- 4. Information Theory & Statistics.- 1. Introduction.- 2. Information Theory.- 3. Variable Interdependence Measure.- 4. Probability Model Comparison.- 5. Pearson's Chi-Square Statistic.- 5. Information and Statistics Linkage.- 1. Statistics.- 2. Concept Of Information.- 3. Information Theory And Statistics.- 4. Conclusion.- 6. Temporal-Spatial Data.- 1. Introduction.- 2. Temporal-Spatial Characteristics.- 3. Temporal-Spatial Data Analysis.- 4. Problem Formulation.- 5. Temperature Analysis Application.- 6. Discussion.- 7. Conclusion.- 7. Change Point Detection Techniques.- 1. Change Point Problem.- 2. Information Criterion Approach.- 3. Binary Segmentation Technique.- 4. Example.- 5. Summary.- 8. Statistical Association Patterns.- 1. Information-Statistical Association.- 2. Conclusion.- 9. Pattern Inference & Model Discovery.- 1. Introduction.- 2. Concept Of Pattern-Based Inference.- 3. Conclusion.- Appendix: Pattern Utility Illustration.- 10. Bayesian Nets & Model Generation.- 1. Preliminary Of Bayesian Networks.- 2. Pattern Synthesis for Model Learning.- 3. Conclusion.- 11. Pattern Ordering Inference: Part I.- 1. Pattern Order Inference Approach.- 2. Bayesian Net Probability Distribution.- 3. Bayesian Model: Pattern Embodiment.- 4. RLCM for Pattern Ordering.- 12. Pattern Ordering Inference: Part II.- 1. Ordering General Event Patterns.- 2. Conclusion.- Appendix I: 51Largest PR(ADHJBCEF % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBqj3BWbIqubWexLMBb50ujbqegm0B% 1jxALjharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqr% Ffpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0F% irpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaa% GcbaWaa0aaaeaacaWGhbaaamaamaaabaGaamysaaaaaaa!3B22!$$ overline G underline I $$.- Appendix II: Ordering of PR(LI/SE). SE=F G I.- Appendix III.A: Evaluation of Method A.- Appendix III.B: Evaluation of Method B.- Appendix III.C: Evaluation of Method C.- 13. Case Study 1: Oracle Data Warehouse.- 1. Introduction.- 2. Background.- 3. Challenge.- 4. Illustrations.- 5. Conclusion.- Appendix I: Warehouse Data Dictionary.- 14. Case Study 2: Financial Data Analysis.- 1. The Data.- 2. Information Theoretic Approach.- 3. Data Analysis.- 4. Conclusion.- 15. Case Study 3: Forest Classification.- 1. Introduction.- 2. Classifier Model Derivation.- 3. Test Data Characteristics.- 4. Experimental Platform.- 5. Classification Results.- 6. Validation Stage.- 7. Effect of Mixed Data on Performance.- 8. Goodness Measure for Evaluation.- 9. Conclusion.- References.