In this book, H. S. Green, a former student of Max Born and well known as an author in physics and in philosophy of science, presents an individual and modern approach to theoretical physics and related fundamental problems. Starting from first principles, the links between physics and information science are unveiled step by step: modern information theory and the classical theory of the Turing machine are combined to create a new interpretation of quantum computability, which is then applied to field theory, gravitation and submicroscopic measurement theory and culminates in a detailed…mehr
In this book, H. S. Green, a former student of Max Born and well known as an author in physics and in philosophy of science, presents an individual and modern approach to theoretical physics and related fundamental problems. Starting from first principles, the links between physics and information science are unveiled step by step: modern information theory and the classical theory of the Turing machine are combined to create a new interpretation of quantum computability, which is then applied to field theory, gravitation and submicroscopic measurement theory and culminates in a detailed examination of the role of the conscious observer in physical measurements. The result is a highly readable book that unifies a wide range of scientific knowledge and is essential reading for all scientists and philosophers of science interested in the interpretation and the implications of the interaction between information science and basic physical theories.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1. First Principles.- 1.1 Relativity and Equivalence.- 1.2 Action.- 1.3 Information and Probability.- 1.4 Uncertainty and Indeterminacy.- 2. Quantal Bits.- 2.1 Creation and Annihilation.- 2.2 Classical Geometry on a Sphere.- 2.3 Spin and Rotation.- 2.4 Lorentz Transformations.- 2.5 Translations in Space and Time.- 2.6 Elementary String Theory.- 2.7 Summary.- 3. Events in Space and Time.- 3.1 Projective Geometries.- 3.2 Classical Geometry of Space-Time.- 3.3 Changes of Observational Frame.- 3.4 Events as Quantal Information.- 3.5 Fermions in Space-Time.- 3.6 Summary.- 4. Quantal 'Tapes'.- 4.1 Representation of States of Higher Spin.- 4.2 Maxwell's Equations and the Photon.- 4.3 Systems of Fermions.- 4.4 Bosons.- 4.5 Observables with Continuous Spectra.- 4.6 Summary.- 5. Observables and Information.- 5.1 Relativistic and Non-relativistic Approximations.- 5.2 Non-relativistic Quantum Mechanics.- 5.3 Uncertainty Relations.- 5.4 Special Relativistic Quantum Mechanics.- 5.5 Selected and Unselected Observables.- 5.6 The Fundamental Observables of Physics.- 5.7 Statistical Physics.- 5.8 Theory of Electrolytes.- 5.9 Summary.- 6. Quantized Field Theories.- 6.1 Free Field Theories.- 6.2 Interacting Fields.- 6.3 Quantum Electrodynamics.- 6.4 Gauge Groups and String Theories.- 7. Gravitation.- 7.1 Geometry in Terms of Quantal Information.- 7.2 Quantum Geometry.- 7.3 Einstein's Gravitational Field Equations.- 7.4 Quantal Embedding.- 7.5 Gauge Theories with Gravitation.- 7.6 Summary.- 8. Measurement and the Observer.- 8.1 Detectors and Measuring Devices.- 8.2 Qubits of Fluctuating Electrolytic Potentials.- 8.3 Cells and Membranes.- 8.4 The Animal Cortex.- 8.5 Theory of Consciousness.- 8.6 Consciousness in Nature.- A. Appendix: Matrices.- A.1 Definitions and ElementaryProperties.- A.1.1 Direct Products and Vector Subscripts.- A.1.2 The Imaginary Unit as a Matrix.- A.2 Determinants.- A.3 Eigenvalues of Matrices.- A.3.1 Reduction of a Finite Matrix to Spectral Form.- A.3.2 Representation of Observables by Matrices.- A.4 The Factorization Method.- A.5 Continuous Eigenvalues.- A.6 Parafermion Representations of Lie Algebras.
1. First Principles.- 1.1 Relativity and Equivalence.- 1.2 Action.- 1.3 Information and Probability.- 1.4 Uncertainty and Indeterminacy.- 2. Quantal Bits.- 2.1 Creation and Annihilation.- 2.2 Classical Geometry on a Sphere.- 2.3 Spin and Rotation.- 2.4 Lorentz Transformations.- 2.5 Translations in Space and Time.- 2.6 Elementary String Theory.- 2.7 Summary.- 3. Events in Space and Time.- 3.1 Projective Geometries.- 3.2 Classical Geometry of Space-Time.- 3.3 Changes of Observational Frame.- 3.4 Events as Quantal Information.- 3.5 Fermions in Space-Time.- 3.6 Summary.- 4. Quantal 'Tapes'.- 4.1 Representation of States of Higher Spin.- 4.2 Maxwell's Equations and the Photon.- 4.3 Systems of Fermions.- 4.4 Bosons.- 4.5 Observables with Continuous Spectra.- 4.6 Summary.- 5. Observables and Information.- 5.1 Relativistic and Non-relativistic Approximations.- 5.2 Non-relativistic Quantum Mechanics.- 5.3 Uncertainty Relations.- 5.4 Special Relativistic Quantum Mechanics.- 5.5 Selected and Unselected Observables.- 5.6 The Fundamental Observables of Physics.- 5.7 Statistical Physics.- 5.8 Theory of Electrolytes.- 5.9 Summary.- 6. Quantized Field Theories.- 6.1 Free Field Theories.- 6.2 Interacting Fields.- 6.3 Quantum Electrodynamics.- 6.4 Gauge Groups and String Theories.- 7. Gravitation.- 7.1 Geometry in Terms of Quantal Information.- 7.2 Quantum Geometry.- 7.3 Einstein's Gravitational Field Equations.- 7.4 Quantal Embedding.- 7.5 Gauge Theories with Gravitation.- 7.6 Summary.- 8. Measurement and the Observer.- 8.1 Detectors and Measuring Devices.- 8.2 Qubits of Fluctuating Electrolytic Potentials.- 8.3 Cells and Membranes.- 8.4 The Animal Cortex.- 8.5 Theory of Consciousness.- 8.6 Consciousness in Nature.- A. Appendix: Matrices.- A.1 Definitions and ElementaryProperties.- A.1.1 Direct Products and Vector Subscripts.- A.1.2 The Imaginary Unit as a Matrix.- A.2 Determinants.- A.3 Eigenvalues of Matrices.- A.3.1 Reduction of a Finite Matrix to Spectral Form.- A.3.2 Representation of Observables by Matrices.- A.4 The Factorization Method.- A.5 Continuous Eigenvalues.- A.6 Parafermion Representations of Lie Algebras.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826