180,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
90 °P sammeln
  • Gebundenes Buch

This book provides an understanding of ultrasound imaging principles and how the field is evolving to better probe living systems. Today, widely-used imaging systems visualize structures and blood flow within the body in real-time. Signal analysis, hardware and contrast agent innovations are extending the capacity of ultrasound to assess tissue elasticity, to enable three-dimensional viewing of moving structures and to detect vessels smaller than the wavelength-limited resolution. Techniques are also being designed so that we are less impeded by bones in the sound path, as well as to combine…mehr

Produktbeschreibung
This book provides an understanding of ultrasound imaging principles and how the field is evolving to better probe living systems. Today, widely-used imaging systems visualize structures and blood flow within the body in real-time. Signal analysis, hardware and contrast agent innovations are extending the capacity of ultrasound to assess tissue elasticity, to enable three-dimensional viewing of moving structures and to detect vessels smaller than the wavelength-limited resolution. Techniques are also being designed so that we are less impeded by bones in the sound path, as well as to combine light and sound to detect optically-absorbent structures within the body. After an introductory chapter reviewing the key basic concepts, each chapter presents a detailed explanation focusing on a specific set of key principles and then shows the related techniques in each domain that are currently being refined to evaluate living systems in greater depth.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
S. Lori Bridal is a CNRS (French National Research Center) researcher and she leads the Laboratory of Biomedical Imaging (Sorbonne University, Inserm and CNRS) in Paris, France. Her research interests include quantitative ultrasonic assessment of tissular and microvascular changes during therapy.