Integral Transforms of Geophysical Fields serve as one ofthe major tools for processing and interpreting geophysicaldata. In this book the authors present a unified treatmentof this theory, ranging from the techniques of the transfor-mation of 2-D and 3-D potential fields to the theory of se-paration and migration of electromagnetic and seismicfields. Of interest primarily to scientists and post-gradu-ate students engaged in gravimetrics, but also useful togeophysicists and researchers in mathematical physics.
Integral Transforms of Geophysical Fields serve as one ofthe major tools for processing and interpreting geophysicaldata. In this book the authors present a unified treatmentof this theory, ranging from the techniques of the transfor-mation of 2-D and 3-D potential fields to the theory of se-paration and migration of electromagnetic and seismicfields. Of interest primarily to scientists and post-gradu-ate students engaged in gravimetrics, but also useful togeophysicists and researchers in mathematical physics.
I Cauchy-Type Integrals in the Theory of a Plane Geopotential Field.- 1 Cauchy-Type Integral.- 2 Representation of Plane Geopotential Fields in the Form of the Cauchy-Type Integral.- 3 Techniques for Separation of Plane Fields.- 4 Analytical Continuation of a Plane Field.- II Cauchy-Type Integral Analogs in the Theory of a Three-Dimensional Geopotential Field.- 5 Three-Dimensional Cauchy-Type Integral Analogs.- 6 Application of Cauchy Integral Analogs to the Theory of a Three-Dimensional Geopotential Field.- 7 Analytical Continuation of a Three-Dimensional Geopotential Field.- III Stratton-Chu Type Integrals in the Theory of Electromagnetic Fields.- 8 Stratton-Chu Type Integrals.- 9 Analytical Continuation of the Electromagnetic Field.- 10 Migration of the Electromagnetic Field.- IV Kirchhoff-Type Integrals in the Elastic Wave Theory.- 11 Kirchhoff-Type Integrals.- 12 Continuation and Migration of Elastic Wave Fields.- Appendix A Space Analogs of the Cauchy-Type Integrals and the Quaternion Theory.- A.1 Quaternions and Operations Thereon.- A.2 Monogenic Functions.- A.3 Quaternion Notation of Space Analogs of the Cauchy-Type Integral.- Appendix B Green Electromagnetic Functions for Inhomogeneous Media and Their Properties.- B.1 Field Equations.- B.2 Lorentz Lemma for an Inhomogeneous Medium.- B.3 Reciprocal Relations.- B.4 Integral Representations of the Electric and Magnetic Fields.- B.5 Some Formulas and Rules of Operations on Dyadic Tensor Functions.- B.6 Tensor Statements of the Ostrogradsky-Gauss Theorem.- References.
I Cauchy-Type Integrals in the Theory of a Plane Geopotential Field.- 1 Cauchy-Type Integral.- 2 Representation of Plane Geopotential Fields in the Form of the Cauchy-Type Integral.- 3 Techniques for Separation of Plane Fields.- 4 Analytical Continuation of a Plane Field.- II Cauchy-Type Integral Analogs in the Theory of a Three-Dimensional Geopotential Field.- 5 Three-Dimensional Cauchy-Type Integral Analogs.- 6 Application of Cauchy Integral Analogs to the Theory of a Three-Dimensional Geopotential Field.- 7 Analytical Continuation of a Three-Dimensional Geopotential Field.- III Stratton-Chu Type Integrals in the Theory of Electromagnetic Fields.- 8 Stratton-Chu Type Integrals.- 9 Analytical Continuation of the Electromagnetic Field.- 10 Migration of the Electromagnetic Field.- IV Kirchhoff-Type Integrals in the Elastic Wave Theory.- 11 Kirchhoff-Type Integrals.- 12 Continuation and Migration of Elastic Wave Fields.- Appendix A Space Analogs of the Cauchy-Type Integrals and the Quaternion Theory.- A.1 Quaternions and Operations Thereon.- A.2 Monogenic Functions.- A.3 Quaternion Notation of Space Analogs of the Cauchy-Type Integral.- Appendix B Green Electromagnetic Functions for Inhomogeneous Media and Their Properties.- B.1 Field Equations.- B.2 Lorentz Lemma for an Inhomogeneous Medium.- B.3 Reciprocal Relations.- B.4 Integral Representations of the Electric and Magnetic Fields.- B.5 Some Formulas and Rules of Operations on Dyadic Tensor Functions.- B.6 Tensor Statements of the Ostrogradsky-Gauss Theorem.- References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826