1. Abschnitt. Rationale Integranden.- 11. Allgemeine Methode der Partialbruchzerlegung; Grundintegrale.- 12. Potenzprodukte von zwei linearen Ausdrücken ax + b und cx + d.- 13. Potenzprodukte von x und $$frac{{{text{ax + b}}}}{{{text{cx + d}}}}$$.- 14. Potenzprodukte von mehreren linearen Ausdrücken.- 15. Potenzprodukte von einem linearen and einem quadratischen Ausdruck.- 16. Potenzprodukte von x und $$sqrt {{text{ax + b}}} $$.- 2. Abschnitt. Algebraisch irrationale Integranden.- 211. Rationale Funktionen von x und $$sqrt {{text{ax + b}}} $$.- 212. Rationale Funktionen von x und $$sqrt {{text{ax + b}}} $$.- 213. Rationale Funktionen von x und $$root {text{n}} of {frac{{{text{ax + b}}}}{{{text{cx + d}}}}} $$.- 221. Rationale Funktionen von x, $$sqrt {{text{ax + b,}},} sqrt {{text{cx + d}}} $$.- 231. Rationale Funktionen von x und $$sqrt {{text{a}}{{text{x}}^2} + 2{text{b}}{{text{x}}^2}, + {text{c}}} $$.- 232. Spezialfall: Rationale Funktionen von x und $$sqrt {{text{a}}{{text{x}}^2} + 2{text{bx}}} $$.- 233. Spezialfall: Rationale Funktionen von x und $$sqrt {{text{a}}{{text{x}}^2} + {text{c}}} $$.- 234. Spezialfall: Rationale Funktionen von x und $$sqrt {{text{a}}{{text{x}}^2} + {{text{a}}^2}} $$.- 235. Spezialfall: Rationale Funktionen von x und $$sqrt {{text{a}}{{text{x}}^2}{text{ - }},{{text{a}}^2}} $$.- 236. Spezialfall: Rationale Funktionen von x und $$sqrt {{{text{a}}^2}{text{ - }},{{text{x}}^2}} $$.- 237. Irrationale Integranden, die sich auf rationale Integranden umformen lassen.- 241. Elliptische Integranden in der Legendreschen kanonischen Form und damit zusammenhängende Integrale.- 242. Elliptische Integrale in der Weierstraßschen kanonischen Form.- 243.Integrale rationaler Funktionen von x und y = $$sqrt{{{text{a}}_0}{{text{x}}^{text{3}}}, + ,3{{text{a}}_{text{1}}}{{text{x}}^{text{2}}} + ,3{{text{a}}_{text{2}}}{text{x + }}{{text{a}}_{text{3}}};} $$ Umrechnung auf die Legendresche kanonische Form.- 244. Integrale rationaler Funktionen von x und y = $$sqrt {{{text{a}}_0}{{text{x}}^4}, + ,4{{text{a}}_{text{1}}}{{text{x}}^3}, + ,6{{text{a}}_2}{{text{x}}^2},{text{ + }},4{{text{a}}_3}{text{x}},{text{ + }},{{text{a}}_4};} $$ Umrechnung auf die Legendresche kanonische Form.- 245. Integrale rationaler Funktionen von x und y = $$root 3 of {{{text{a}}_0}{{text{x}}^3}, + ,3{{text{a}}_{text{1}}}{{text{x}}^2}, + ,3{{text{a}}_2}{text{x}},{text{ + }},{{text{a}}_3}} = ,root 3 of {{{text{a}}_0}{text{(x - }},{alpha _{text{1}}}{text{)}},{text{(x - }},{alpha _2}{text{)}},{text{(x}}, - ,{alpha _3});} $$ Umrechnung auf die Weierstraßsche und Legendresche kanonische Form.- 246. Integrale rationaler Funktionen von x und y = $$root 3 of {{{text{x}}^2}} pm 1;$$ Umrechnung auf die Legendresche kanonische Form.- 251. Hyperelliptische Integrale.- 3. Abschnitt. Transzendente Integranden.- 311. Integrale der Form $$int {{text{R}},{text{(}}{{text{e}}^{lambda {text{x}}}}{text{)}}} ,{text{dx}}$$.- 312. Integrale der Form $$int {{text{f}},({text{x}}),{{text{e}}^{lambda {text{x}}}}} {text{dx}}$$.- 313. Integrale der Form $$int {{text{f}},({text{x}}),{{text{e}}^{{text{a}}{{text{x}}^{text{2}}} + 2{text{bx + c}}}}{text{dx}},} $$.- 321. Integrale der Form $$int {{text{f}},(log ,{text{x}}),{text{dx}},} $$.- 322. Integrale der Form $$int {{text{R}},({text{x}}),{{log }^{text{n}}}{text{x}},{text{dx}},} $$.- 323. Integrale der Form $$int {{text{f}},({text{x}}),{{log}^{text{n}}}{text{g(x)}},{text{dx}},} $$.- 331. Integrale der Form $$int {{text{R}},(sin ,{text{x}},,cos ,{text{x}}),{text{dx}},} $$.- 332. Integrale der Form $$int {{text{R}},(sin ,({text{ax}},{text{ + }},{text{b),}},cos ,,({text{cx}},{text{ + }},{text{d}}),, ldots ),{text{dx}},} $$.- 333. Integrale der Form $$int {{{text{X}}^{text{p}}},sin {,^{text{m}}}{text{x}},cos {,^{text{n}}},{text{x}},{text{dx}}} $$.- 334. Integrale der Form $$int {{{text{e}}^{{text{ax}}}},sin {,^{text{m}}}{text{bx}},cos {,^{text{n}}},{text{cx}},{text{dx}}} $$.- 335. Integrale der Form $$int {{text{R}},({text{x, }},{{text{e}}^{{text{ax}}}},,sin ,{text{bx,}},{text{cos}},{text{cx)}},{text{dx}}} $$.- 336. Integrale der Form $$int {{text{R}},left( {_{cos }^{sin }({text{a}}{{text{x}}^{text{2}}}, + ,2{text{bx}},{text{ + }},{text{c}}),,{text{x}}} right),{text{dx}}} $$.- 341. Integrale der Form $$int {{text{R}},left( {{text{x,}}, + ,{text{arc}},_{cos }^{sin },{text{x}}} right),{text{dx}}} $$.- 342. Integrale der Form $$int {{text{R}},left( {{text{x,}},{text{arc}},_{operatorname{c} {text{tg}}}^{{text{tg}}},{text{x}}} right),{text{dx}}} $$.- 351. Integrale der Form $$int {{text{R}},{text{(Sin}},{text{x,}},{text{Cof}},{text{x)}}} ,{text{dx}}$$.- 352. Integrale der Form $$int {{text{R}},{text{(Sin}},{text{x,}},{text{Cof}},{text{x)}}} ,{text{dx}}$$.- 353. Integrale der Form $$int {{text{R}},{text{(Sin}},({text{ax}},{text{ + }},{text{b),}},{text{Cof}},({text{cx}},{text{ + }},{text{d),}} ldots {text{)}}} ,{text{dx}}$$.- 354. Integrale der Form $$int {{{text{x}}^{text{p}}}{text{Si}}{{text{n}}^{text{m}}}{text{x}},{text{Co}}{{text{f}}^{text{n}}}{text{x}}} ,{text{dx}}$$.- 361. Integrale der Form $$int {{text{R}},{text{(Sin}},({text{ax}},{text{ + }},{text{b),}},{text{sin}},({text{cx}},{text{ + }},{text{d),}} ldots {text{)}}} ,{text{dx}}$$.- 362. Integrale der Form $$int {{text{R}},left( {{text{x,}},{text{Ar}}_{{text{Cof}}}^{{text{Sin}}},{text{x}}} right)} ,{text{dx}}$$.- 371. Integrale von Weierstraßschen elliptischen Funktionen.- 372. Integrale von Jacobischen elliptischen Funktionen.