Die Landwirtschaft ist für das wirtschaftliche Wohlergehen eines Landes von entscheidender Bedeutung, doch Pflanzenkrankheiten stellen eine große Herausforderung dar. Der Anbau von Pfefferkörnern erfordert aufgrund von Krankheiten besondere Aufmerksamkeit. Data Mining wurde bereits zur Erkennung von Pflanzenkrankheiten eingesetzt, doch fehlt es an der Nutzung von Wissen. In dieser Studie wird Data Mining mit wissensbasierten Systemen zur Diagnose und Behandlung von Pfefferkrankheiten kombiniert. Die Experimente wurden mit den vier Algorithmen JRip, PART, J48 und REPTree für den Paprika-Datensatz durchgeführt. Alle Experimente für jeden Algorithmus wurden mit 9927 Instanzen und vier Klassen durchgeführt, nämlich Pilz-, Insekten-, Virus- und Bakterien-Krankheitstypen der Ernte. Mit Hilfe von Klassifizierungsalgorithmen wurde ein prädiktives Modell entwickelt und eine regelbasierte Wissensrepräsentation zur Diagnose und Behandlung der Pflanzen eingesetzt. Die Leistung des Systems wurde mit Domänenexperten und Benutzerakzeptanz getestet und ergab vielversprechende Ergebnisse von 90,5 bzw. 86,8 % mit einer durchschnittlichen Präzision und Wiedererkennung von 96 % bzw. 97,2 % für die Gesamtleistung.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.