50,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
25 °P sammeln
  • Broschiertes Buch

The stability of colloidal dispersions like foam is governed by the interactions in the thin liquid films between the compartments. For a better understanding of the macroscopic foam, single foam films are investigated. The focus of this study is the effect of oppositely charged polyelectrolyte/surfactant mixtures on foam film stability. For this purpose, mainly mixtures of cationic surfactants and anionic polyelectrolytes around the isoelectric point (IEP) are used. Since both components are oppositely charged, they can form highly surface-active complexes. The results of the TFPB…mehr

Produktbeschreibung
The stability of colloidal dispersions like foam is governed by the interactions in the thin liquid films between the compartments. For a better understanding of the macroscopic foam, single foam films are investigated. The focus of this study is the effect of oppositely charged polyelectrolyte/surfactant mixtures on foam film stability. For this purpose, mainly mixtures of cationic surfactants and anionic polyelectrolytes around the isoelectric point (IEP) are used. Since both components are oppositely charged, they can form highly surface-active complexes. The results of the TFPB measurements show that the general properties of foam films formed from these mixtures are very similar throughout all systems. A reduction of foam film stability is detected slightly below the nominal IEP of the system and very stable foam films are found in the concentration regime above the IEP. However, the surface characterisation of the air/water interface reveals that this phenomenon is not due to a charge reversal at the interface. Furthermore, the results show that the properties of the foam films depend on the polymer chain length and the hydrophilic/hydrophobic balance of the components.
Autorenporträt
Nora Kristen-Hochrein was born in 1981 and lives in Berlin. Sheholds a Masters degree in chemistry from the University of Baseland did her Masters thesis at Lund University. From 2006 to 2010she was a PhD student at the TU Berlin. Her research interestsare foam film properties and surface asdorption ofpolyelectrolyte/surfactant mixtures.