Rafael A. Irizarry
Introduction to Data Science
Data Analysis and Prediction Algorithms with R
Herausgeber: Topic, Martina
Rafael A. Irizarry
Introduction to Data Science
Data Analysis and Prediction Algorithms with R
Herausgeber: Topic, Martina
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book.
Andere Kunden interessierten sich auch für
- Jerry BonnellExploring Data Science with R and the Tidyverse103,99 €
- Darrin Speegle (Department of Mathematics and Statistics Saint LouiProbability, Statistics, and Data94,99 €
- Francisco UrdinezR for Political Data Science42,99 €
- Francisco UrdinezR for Political Data Science109,99 €
- Ryan A. EstrelladoData Science in Education Using R85,99 €
- Michael BaronProbability and Statistics for Computer Scientists97,99 €
- Przemyslaw BiecekExplanatory Model Analysis89,99 €
-
-
-
The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC Data Science Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 713
- Erscheinungstermin: 8. November 2019
- Englisch
- Abmessung: 259mm x 180mm x 39mm
- Gewicht: 1732g
- ISBN-13: 9780367357986
- ISBN-10: 0367357984
- Artikelnr.: 58267009
- Chapman & Hall/CRC Data Science Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 713
- Erscheinungstermin: 8. November 2019
- Englisch
- Abmessung: 259mm x 180mm x 39mm
- Gewicht: 1732g
- ISBN-13: 9780367357986
- ISBN-10: 0367357984
- Artikelnr.: 58267009
Rafael A. Irizarry is professor of data sciences at the Dana-Farber Cancer Institute, professor of biostatistics at Harvard, and a fellow of the American Statistical Association. Dr. Irizarry is an applied statistician and during the last 20 years has worked in diverse areas, including genomics, sound engineering, and public health. He disseminates solutions to data analysis challenges as open source software, tools that are widely downloaded and used. Prof. Irizarry has also developed and taught several data science courses at Harvard as well as popular online courses.
I R. 1 Installing R and RStudio. 2. Getting Started with R and RStudio. 3.
R Basics. 4. Programming basics. 5. The tidyverse. 6. Importing data. II
Data Visualization. 7. Introduction to data visualization. 8. ggplot2. 9.
Visualizing data distributions. 10. Data visualization in practice. 11.
Data visualization principles. 12. Robust summaries. III Statistics with R.
13. Introduction to Statistics with R. 14. Probability. 15. Random
variables. 16. Statistical Inference. 17. Statistical models. 18.
Regression. 19. Linear Models. 20. Association is not causation. IV Data
Wrangling. 21. Introduction to Data Wrangling. 22. Reshaping data. 23.
Joining tables. 24. Web Scraping. 25. String Processing. 26. Parsing Dates
and Times. 27. Text mining. V Machine Learning. 28. Introduction to Machine
Learning. 29. Smoothing. 30. Cross validation. 31. The caret package. 32.
Examples of algorithms. 33. Machine learning in practice. 34. Large
datasets. 35. Clustering. VI Productivity tools. 36. Introduction to
productivity tools. 37. Accessing the terminal and installing Git. 38.
Organizing with Unix. 39. Git and GitHub. 40. Reproducible projects with
RStudio and R markdown.
R Basics. 4. Programming basics. 5. The tidyverse. 6. Importing data. II
Data Visualization. 7. Introduction to data visualization. 8. ggplot2. 9.
Visualizing data distributions. 10. Data visualization in practice. 11.
Data visualization principles. 12. Robust summaries. III Statistics with R.
13. Introduction to Statistics with R. 14. Probability. 15. Random
variables. 16. Statistical Inference. 17. Statistical models. 18.
Regression. 19. Linear Models. 20. Association is not causation. IV Data
Wrangling. 21. Introduction to Data Wrangling. 22. Reshaping data. 23.
Joining tables. 24. Web Scraping. 25. String Processing. 26. Parsing Dates
and Times. 27. Text mining. V Machine Learning. 28. Introduction to Machine
Learning. 29. Smoothing. 30. Cross validation. 31. The caret package. 32.
Examples of algorithms. 33. Machine learning in practice. 34. Large
datasets. 35. Clustering. VI Productivity tools. 36. Introduction to
productivity tools. 37. Accessing the terminal and installing Git. 38.
Organizing with Unix. 39. Git and GitHub. 40. Reproducible projects with
RStudio and R markdown.
I R. 1 Installing R and RStudio. 2. Getting Started with R and RStudio. 3.
R Basics. 4. Programming basics. 5. The tidyverse. 6. Importing data. II
Data Visualization. 7. Introduction to data visualization. 8. ggplot2. 9.
Visualizing data distributions. 10. Data visualization in practice. 11.
Data visualization principles. 12. Robust summaries. III Statistics with R.
13. Introduction to Statistics with R. 14. Probability. 15. Random
variables. 16. Statistical Inference. 17. Statistical models. 18.
Regression. 19. Linear Models. 20. Association is not causation. IV Data
Wrangling. 21. Introduction to Data Wrangling. 22. Reshaping data. 23.
Joining tables. 24. Web Scraping. 25. String Processing. 26. Parsing Dates
and Times. 27. Text mining. V Machine Learning. 28. Introduction to Machine
Learning. 29. Smoothing. 30. Cross validation. 31. The caret package. 32.
Examples of algorithms. 33. Machine learning in practice. 34. Large
datasets. 35. Clustering. VI Productivity tools. 36. Introduction to
productivity tools. 37. Accessing the terminal and installing Git. 38.
Organizing with Unix. 39. Git and GitHub. 40. Reproducible projects with
RStudio and R markdown.
R Basics. 4. Programming basics. 5. The tidyverse. 6. Importing data. II
Data Visualization. 7. Introduction to data visualization. 8. ggplot2. 9.
Visualizing data distributions. 10. Data visualization in practice. 11.
Data visualization principles. 12. Robust summaries. III Statistics with R.
13. Introduction to Statistics with R. 14. Probability. 15. Random
variables. 16. Statistical Inference. 17. Statistical models. 18.
Regression. 19. Linear Models. 20. Association is not causation. IV Data
Wrangling. 21. Introduction to Data Wrangling. 22. Reshaping data. 23.
Joining tables. 24. Web Scraping. 25. String Processing. 26. Parsing Dates
and Times. 27. Text mining. V Machine Learning. 28. Introduction to Machine
Learning. 29. Smoothing. 30. Cross validation. 31. The caret package. 32.
Examples of algorithms. 33. Machine learning in practice. 34. Large
datasets. 35. Clustering. VI Productivity tools. 36. Introduction to
productivity tools. 37. Accessing the terminal and installing Git. 38.
Organizing with Unix. 39. Git and GitHub. 40. Reproducible projects with
RStudio and R markdown.