- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Introduction to Financial Derivatives with Python is an ideal textbook for an undergraduate course on derivatives, whether on a finance, economics, or financial mathematics programme. As well as covering all of the essential topics one would expect to be covered, the book also includes the basis of the numerical techniques most used in the financial industry, and their implementation in Python.
Features Connected to a Github repository with the codes in the book. The repository can be accessed at https://bit.ly/3bllnufSuitable for undergraduate students, as well as anyone who wants a gentle…mehr
Andere Kunden interessierten sich auch für
- Mladen Victor WickerhauserIntroducing Financial Mathematics70,99 €
- Hugo D. JunghennAn Introduction to Financial Mathematics40,99 €
- Jerome Yen (Macau University of Macau)Emerging Financial Derivatives60,99 €
- Ahmet Can InciContemporary Issues in Quantitative Finance48,99 €
- Robert JarrowModeling Fixed Income Securities and Interest Rate Options40,99 €
- Robert JarrowModeling Fixed Income Securities and Interest Rate Options124,99 €
- Ali Hirsa (Columbia University, New York, USA)Computational Methods in Finance87,99 €
-
-
-
Introduction to Financial Derivatives with Python is an ideal textbook for an undergraduate course on derivatives, whether on a finance, economics, or financial mathematics programme. As well as covering all of the essential topics one would expect to be covered, the book also includes the basis of the numerical techniques most used in the financial industry, and their implementation in Python.
Features
Connected to a Github repository with the codes in the book. The repository can be accessed at https://bit.ly/3bllnufSuitable for undergraduate students, as well as anyone who wants a gentle introduction to the principles of quantitative financeNo pre-requisites required for programming or advanced mathematics beyond basic calculus
Features
Connected to a Github repository with the codes in the book. The repository can be accessed at https://bit.ly/3bllnufSuitable for undergraduate students, as well as anyone who wants a gentle introduction to the principles of quantitative financeNo pre-requisites required for programming or advanced mathematics beyond basic calculus
Produktdetails
- Produktdetails
- Chapman and Hall/CRC Financial Mathematics Series
- Verlag: Chapman and Hall/CRC / Taylor & Francis
- Seitenzahl: 228
- Erscheinungstermin: 15. Dezember 2022
- Englisch
- Abmessung: 241mm x 162mm x 21mm
- Gewicht: 492g
- ISBN-13: 9781032211039
- ISBN-10: 1032211032
- Artikelnr.: 66267537
- Chapman and Hall/CRC Financial Mathematics Series
- Verlag: Chapman and Hall/CRC / Taylor & Francis
- Seitenzahl: 228
- Erscheinungstermin: 15. Dezember 2022
- Englisch
- Abmessung: 241mm x 162mm x 21mm
- Gewicht: 492g
- ISBN-13: 9781032211039
- ISBN-10: 1032211032
- Artikelnr.: 66267537
Elisa Alòs holds a Ph.D. in Mathematics from the University of Barcelona. She is an Associate Professor in the Department of Economics and Business at Universitat Pompeu Fabra (UPF) and a Barcelona GSE Affiliated Professor. Her research focus has been on the applications of the Malliavin calculus and the fractional Brownian motion in mathematical finance and volatility modelling since he past fourteen years. Raúl Merino has been working full-time in the industry as Risk Quant since 2008. He is also an Associate Professor at Pompeu Fabra University (UPF) where he teaches the course "Financial Derivatives and Risk Management". Raul holds a Ph.D. in Mathematics from the University of Barcelona. In his Ph.D. he studied the use of decomposition formulas in stochastic volatility models. His research interests are stochastic analysis and applied mathematics, with a special focus on applications to mathematical finance.
1. Introduction. 1.1. Financial Markets. 1.2. Derivatives. 1.3. Time has a Value. 1.4. No-Arbitrage Principle. 1.5. Chapter's Digest. 1.6. Exercises. 2. Futures and Forwards. 2.1. Forward Contracts: Definitions. 2.2. Futures. 2.3. Why to use Forwards and Futures? 2.4. The Fair Delivery Price: The Forward Price. 2.5. Chapter's Digest. 2.6. Exercises. 3. Options. 3.1. Call and Put Options. 3.2. The Intrinsic Value of an Option. 3.3. Some Properties of Option Prices. 3.4. Speculation with Options. 3.5. Some Classical Strategies. 3.6. Draw your Strategy with Python. 3.7. Chapter's Digest. 3.8. Exercises. 4. Exotic Options. 4.1. Binary Options. 4.2. Forward Start Options. 4.3. Path-Dependent Options. 4.4. Spread and Basket Options. 4.5. Bermuda Options. 4.6. Chapter's Digest. 4.7. Exercises. 5. The Binomial Model. 5.1. The Single-Period Binomial Model. 5.2. The Multi-Period Binomial Model. 5.3. The Greeks in the Binomial Model. 5.4. Coding the Binomial Model. 5.5. Chapter's Digest. 5.6. Exercises. 6. A Continuous-Time Pricing Model. 6.1. Creating Some Intuition. 6.2. The Black-Scholes-Merton Framework. 6.3. THE BLACK-SCHOLES-MERTON EQUATION. 6.4. The Black-Scholes-Merton Formula. 6.5. The Black-Scholes-Merton Model from a Probabilistic Perspective. 6.6. The Black-Scholes-Merton Price and the Binomial Price. 6.7. The Greeks in the Black-Scholes-Merton Model. 6.8. Other Assets. 6.9. Drawbacks of the Black-Scholes-Merton Model. 6.10. Chapter's Digest. 6.11. Exercises. 7. Monte Carlo Methods. 7.1. The Need of General Option Pricing Tools. 7.2. Mathematical Foundations of Monte Carlo Methods. 7.3. Option Pricing with Monte Carlo Methods. 7.4. European Options that Depend on the Final Price of Two Assets. 7.5. Chapter's Digest. 7.6. Exercises. 8. The Volatility. 8.1. Historical Volatilities. 8.2. The Spot Volatility. 8.3. The Implied Volatility. 8.4. Chapter's Digest. 8.5. Exercises. 9. Replicating Portfolios. 9.1. Replicating Portfolios for the Binomial Model. 9.2. Replicating Portfolios for the Black-Scholes-Merton Model. 9.3. Chapter's Digest. 9.4. Exercises.
1. Introduction. 1.1. Financial Markets. 1.2. Derivatives. 1.3. Time has a Value. 1.4. No-Arbitrage Principle. 1.5. Chapter's Digest. 1.6. Exercises. 2. Futures and Forwards. 2.1. Forward Contracts: Definitions. 2.2. Futures. 2.3. Why to use Forwards and Futures? 2.4. The Fair Delivery Price: The Forward Price. 2.5. Chapter's Digest. 2.6. Exercises. 3. Options. 3.1. Call and Put Options. 3.2. The Intrinsic Value of an Option. 3.3. Some Properties of Option Prices. 3.4. Speculation with Options. 3.5. Some Classical Strategies. 3.6. Draw your Strategy with Python. 3.7. Chapter's Digest. 3.8. Exercises. 4. Exotic Options. 4.1. Binary Options. 4.2. Forward Start Options. 4.3. Path-Dependent Options. 4.4. Spread and Basket Options. 4.5. Bermuda Options. 4.6. Chapter's Digest. 4.7. Exercises. 5. The Binomial Model. 5.1. The Single-Period Binomial Model. 5.2. The Multi-Period Binomial Model. 5.3. The Greeks in the Binomial Model. 5.4. Coding the Binomial Model. 5.5. Chapter's Digest. 5.6. Exercises. 6. A Continuous-Time Pricing Model. 6.1. Creating Some Intuition. 6.2. The Black-Scholes-Merton Framework. 6.3. THE BLACK-SCHOLES-MERTON EQUATION. 6.4. The Black-Scholes-Merton Formula. 6.5. The Black-Scholes-Merton Model from a Probabilistic Perspective. 6.6. The Black-Scholes-Merton Price and the Binomial Price. 6.7. The Greeks in the Black-Scholes-Merton Model. 6.8. Other Assets. 6.9. Drawbacks of the Black-Scholes-Merton Model. 6.10. Chapter's Digest. 6.11. Exercises. 7. Monte Carlo Methods. 7.1. The Need of General Option Pricing Tools. 7.2. Mathematical Foundations of Monte Carlo Methods. 7.3. Option Pricing with Monte Carlo Methods. 7.4. European Options that Depend on the Final Price of Two Assets. 7.5. Chapter's Digest. 7.6. Exercises. 8. The Volatility. 8.1. Historical Volatilities. 8.2. The Spot Volatility. 8.3. The Implied Volatility. 8.4. Chapter's Digest. 8.5. Exercises. 9. Replicating Portfolios. 9.1. Replicating Portfolios for the Binomial Model. 9.2. Replicating Portfolios for the Black-Scholes-Merton Model. 9.3. Chapter's Digest. 9.4. Exercises.