The first part of this book is an introduction with emphasis on examples that illustrate the theory of operator spaces. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third part of the book describes applications to non self-adjoint operator algebras and similarity problems. The author's counterexample to the "Halmos problem" is presented, along with work on the new concept of "length" of an operator algebra.
The first part of this book is an introduction with emphasis on examples that illustrate the theory of operator spaces. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third part of the book describes applications to non self-adjoint operator algebras and similarity problems. The author's counterexample to the "Halmos problem" is presented, along with work on the new concept of "length" of an operator algebra.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Part I. Introduction to Operator Spaces: 1. Completely bounded maps 2. Minimal tensor product 3. Minimal and maximal operator space structures on a Banach space 4. Projective tensor product 5. The Haagerup tensor product 6. Characterizations of operator algebras 7. The operator Hilbert space 8. Group C*-algebras 9. Examples and comments 10. Comparisons Part II. Operator Spaces and C*-tensor products: 11. C*-norms on tensor products 12. Nuclearity and approximation properties 13. C* 14. Kirchberg's theorem on decomposable maps 15. The weak expectation property 16. The local lifting property 17. Exactness 18. Local reflexivity 19. Grothendieck's theorem for operator spaces 20. Estimating the norms of sums of unitaries 21. Local theory of operator spaces 22. B(H) * B(H) 23. Completely isomorphic C*-algebras 24. Injective and projective operator spaces Part III. Operator Spaces and Non Self-Adjoint Operator Algebras: 25. Maximal tensor products and free products of non self-adjoint operator algebras 26. The Blechter-Paulsen factorization 27. Similarity problems 28. The Sz-nagy-halmos similarity problem Solutions to the exercises References.
Part I. Introduction to Operator Spaces: 1. Completely bounded maps 2. Minimal tensor product 3. Minimal and maximal operator space structures on a Banach space 4. Projective tensor product 5. The Haagerup tensor product 6. Characterizations of operator algebras 7. The operator Hilbert space 8. Group C*-algebras 9. Examples and comments 10. Comparisons Part II. Operator Spaces and C*-tensor products: 11. C*-norms on tensor products 12. Nuclearity and approximation properties 13. C* 14. Kirchberg's theorem on decomposable maps 15. The weak expectation property 16. The local lifting property 17. Exactness 18. Local reflexivity 19. Grothendieck's theorem for operator spaces 20. Estimating the norms of sums of unitaries 21. Local theory of operator spaces 22. B(H) * B(H) 23. Completely isomorphic C*-algebras 24. Injective and projective operator spaces Part III. Operator Spaces and Non Self-Adjoint Operator Algebras: 25. Maximal tensor products and free products of non self-adjoint operator algebras 26. The Blechter-Paulsen factorization 27. Similarity problems 28. The Sz-nagy-halmos similarity problem Solutions to the exercises References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497