Saeed B. Niku (Cal Poly San L Department of Mechanical Engineering
Introduction to Robotics
Analysis, Control, Applications
Saeed B. Niku (Cal Poly San L Department of Mechanical Engineering
Introduction to Robotics
Analysis, Control, Applications
- Gebundenes Buch
Andere Kunden interessierten sich auch für
- Douglas C. Montgomery (Georgia Institute of Technology)Introduction to Statistical Quality Control, EMEA Edition64,99 €
- M. S. Tyagi (Indian Institute of Technology, Kanpur, India)Introduction to Semiconductor Materials and Devices263,99 €
- Douglas C. Montgomery (Georgia Institute of Technology)Introduction to Time Series Analysis and Forecasting, 1e Student Solutions Manual49,99 €
- Yoshihiko AkaiwaIntroduction to Digital Mobile Communication139,99 €
- Stephen Corda (USA University of MarylandIntroduction to Aerospace Engineering with a Flight Test Perspective112,99 €
- Richard C. Dorf (University of California)Dorf's Introduction to Electric Circuits64,99 €
- Deborah A. KaminskiIntroduction to Thermal and Fluids Engineering335,99 €
-
-
-
Produktdetails
- Verlag: John Wiley & Sons Inc
- 3 ed
- Seitenzahl: 528
- Erscheinungstermin: 13. Februar 2020
- Englisch
- Abmessung: 284mm x 220mm x 35mm
- Gewicht: 1534g
- ISBN-13: 9781119527626
- ISBN-10: 1119527627
- Artikelnr.: 57829138
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
SAEED BENJAMIN NIKU, PHD, P.E., is a Professor of Mechanical Engineering at California Polytechnic State University, San Luis Obispo, California. He has taught courses in mechanics, robotics, design, and creativity.
Preface xv
About the Companion Website xix
1 Fundamentals 1
1.1 Introduction 1
1.2 What Is a Robot? 2
1.3 Classification of Robots 3
1.4 What Is Robotics? 3
1.5 History of Robotics 3
1.6 Advantages and Disadvantages of Robots 4
1.7 Robot Components 5
1.8 Robot Degrees of Freedom 7
1.9 Robot Joints 9
1.10 Robot Coordinates 9
1.11 Robot Reference Frames 11
1.12 Programming Modes 12
1.13 Robot Characteristics 13
1.14 Robot Workspace 13
1.15 Robot Languages 14
1.16 Robot Applications 17
1.17 Other Robots and Applications 23
1.18 Collaborative Robots 28
1.19 Social Issues 29
1.20 Summary 30
References 30
Problems 32
2 Kinematics of Serial Robots: Position Analysis 35
2.1 Introduction 35
2.2 Robots as Mechanisms 35
2.3 Conventions 37
2.4 Matrix Representation 37
2.4.1 Representation of a Point in Space 37
2.4.2 Representation of a Vector in Space 38
2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 40
2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 41
2.4.5 Representation of a Rigid Body 42
2.5 Homogeneous Transformation Matrices 45
2.6 Representation of Transformations 46
2.6.1 Representation of a Pure Translation 46
2.6.2 Representation of a Pure Rotation about an Axis 47
2.6.3 Representation of Combined Transformations 50
2.6.4 Transformations Relative to the Current (Moving) Frame 52
2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 53
2.7 Inverse of Transformation Matrices 54
2.8 Forward and Inverse Kinematics of Robots 59
2.9 Forward and Inverse Kinematic Equations: Position 60
2.9.1 Cartesian (Gantry, Rectangular) Coordinates 60
2.9.2 Cylindrical Coordinates 61
2.9.3 Spherical Coordinates 63
2.9.4 Articulated Coordinates 65
2.10 Forward and Inverse Kinematic Equations: Orientation 65
2.10.1 Roll, Pitch, Yaw (RPY) Angles 65
2.10.2 Euler Angles 68
2.10.3 Articulated Joints 70
2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70
2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of
Robots 70
2.13 The Inverse Kinematic Solution of Robots 84
2.13.1 General Solution for Articulated Robot Arms 86
2.14 Inverse Kinematic Programming of Robots 89
2.15 Dual-Arm Cooperating Robots 91
2.16 Degeneracy and Dexterity 92
2.16.1 Degeneracy 92
2.16.2 Dexterity 93
2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93
2.18 Design Projects 95
2.18.1 Stair-Climbing Robot 96
2.18.2 A 3-DOF Robot 96
2.18.3 A 3-DOF Mobile Robot 98
2.19 Summary 99
References 99
Problems 99
3 Robot Kinematics with Screw-Based Mechanics 111
3.1 Introduction 111
3.2 What Is a Screw? 111
3.3 Rotation about a Screw Axis 112
3.4 Homogenous Transformations about a General Screw Axis 115
3.5 Successive Screw-Based Transformations 119
3.6 Forward and Inverse Position Analysis of an Articulated Robot 120
3.7 Design Projects 127
3.8 Summary 127
Additional Reading 128
Problems 128
4 Kinematics Analysis of Parallel Robots 133
4.1 Introduction 133
4.2 Physical Characteristics of Parallel Robots 134
4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139
4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140
4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 141
4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 143
4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147
4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 147
4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 152
4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 154
4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 160
4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 167
4.6 Other Parallel Robot Configurations 169
4.7 Design Projects 169
4.8 Summary 170
References 170
Problems 170
5 Differential Motions and Velocities 173
5.1 Introduction 173
5.2 Differential Relationships 173
5.3 The Jacobian 174
5.4 Differential versus Large-Scale Motions 176
5.5 Differential Motions of a Frame versus a Robot 177
5.6 Differential Motions of a Frame 178
5.6.1 Differential Translations 178
5.6.2 Differential Rotations about Reference Axes 178
5.6.3 Differential Rotation about a General Axis q 179
5.6.4 Differential Transformations of a Frame 181
5.7 Interpretation of the Differential Change 182
5.8 Differential Changes between Frames 183
5.9 Differential Motions of a Robot and Its Hand Frame 185
5.10 Calculation of the Jacobian 185
5.11 How to Relate the Jacobian and the Differential Operator 188
5.12 The Inverse Jacobian 191
5.13 Calculation of the Jacobian with Screw-Based Mechanics 197
5.14 The Inverse Jacobian for the Screw-Based Method 206
5.15 Calculation of the Jacobians of Parallel Robots 206
5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 207
5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 208
5.16 Design Projects 210
5.16.1 The 3-DOF Robot 210
5.16.2 The 3-DOF Mobile Robot 210
5.17 Summary 210
References 211
Problems 211
6 Dynamic and Force Analysis 219
6.1 Introduction 219
6.2 Lagrangian Mechanics: A Short Overview 220
6.3 Effective Moments of Inertia 229
6.4 Dynamic Equations for Multiple-DOF Robots 229
6.4.1 Kinetic Energy 229
6.4.2 Potential Energy 234
6.4.3 The Lagrangian 234
6.4.4 Robot's Equations of Motion 234
6.5 Static Force Analysis of Robots 239
6.6 Transformation of Forces and Moments between Coordinate Frames 242
6.7 Design Project 244
6.8 Summary 244
References 244
Problems 245
7 Trajectory Planning 247
7.1 Introduction 247
7.2 Path vs. Trajectory 247
7.3 Joint-Space vs. Cartesian-Space Descriptions 248
7.4 Basics of Trajectory Planning 249
7.5 Joint-Space Trajectory Planning 252
7.5.1 Third-Order Polynomial Trajectory Planning 252
7.5.2 Fifth-Order Polynomial Trajectory Planning 255
7.5.3 Linear Segments with Parabolic Blends 257
7.5.4 Linear Segments with Parabolic Blends and Via Points 259
7.5.5 Higher-Order Trajectories 260
7.5.6 Other Trajectories 263
7.6 Cartesian-Space Trajectories 263
7.7 Continuous Trajectory Recording 267
7.8 Design Project 268
7.9 Summary 269
References 269
Problems 269
8 Motion Control Systems 273
8.1 Introduction 273
8.2 Basic Components and Terminology 273
8.3 Block Diagrams 274
8.4 System Dynamics 274
8.5 Laplace Transform 278
8.6 Inverse Laplace Transform 281
8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 281
8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 282
8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles
283
8.7 Transfer Functions 285
8.8 Block Diagram Algebra 288
8.9 Characteristics of First-Order Transfer Functions 290
8.10 Characteristics of Second-Order Transfer Functions 292
8.11 Characteristic Equation: Pole/Zero Mapping 294
8.12 Steady-State Error 296
8.13 Root Locus Method 298
8.14 Proportional Controllers 303
8.15 Proportional-Plus-Integral Controllers 306
8.16 Proportional-Plus-Derivative Controllers 308
8.17 Proportional-Integral-Derivative Controller (PID) 311
8.18 Lead and Lag Compensators 313
8.19 Bode Diagram and Frequency-Domain Analysis 313
8.20 Open-Loop vs. Closed-Loop Applications 314
8.21 Multiple-Input and Multiple-Output Systems 314
8.22 State-Space Control Methodology 316
8.23 Digital Control 320
8.24 Nonlinear Control Systems 322
8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323
8.26 Design Projects 326
8.27 Summary 327
References 327
Problems 327
9 Actuators and Drive Systems 331
9.1 Introduction 331
9.2 Characteristics of Actuating Systems 331
9.2.1 Nominal Characteristics - Weight, Power-to-Weight Ratio, Operating
Pressure, Voltage, and Others 331
9.2.2 Stiffness vs. Compliance 332
9.2.3 Use of Reduction Gears 332
9.3 Comparison of Actuating Systems 335
9.4 Hydraulic Actuators 335
9.5 Pneumatic Devices 337
9.6 Electric Motors 338
9.6.1 Fundamental Differences Between AC- and DC-Type Motors 339
9.6.2 DC Motors 341
9.6.3 AC Motors 344
9.6.4 Brushless DC Motors 345
9.6.5 Direct-Drive Electric Motors 346
9.6.6 Servomotors 346
9.6.7 Stepper Motors 347
9.7 Microprocessor Control of Electric Motors 360
9.7.1 Pulse Width Modulation 361
9.7.2 Direction Control of DC Motors with an H-Bridge 363
9.8 Magnetostrictive Actuators 364
9.9 Shape-Memory Type Metals 364
9.10 Electroactive Polymer Actuators (EAPs) 364
9.11 Speed Reduction 365
9.12 Other Systems 367
9.13 Design Projects 367
9.14 Summary 370
References 371
Problems 372
10 Sensors 375
10.1 Introduction 375
10.2 Sensor Characteristics 375
10.3 Sensor Utilization 377
10.4 Position Sensors 378
10.4.1 Potentiometers 378
10.4.2 Encoders 379
10.4.3 Linear Variable Differential Transformer (LVDT) 382
10.4.4 Resolvers 383
10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 383
10.4.6 Hall-effect Sensors 384
10.4.7 Global Positioning System (GPS) 384
10.4.8 Other Devices 385
10.5 Velocity Sensors 385
10.5.1 Encoders 385
10.5.2 Tachometers 385
10.5.3 Differentiation of Position Signal 386
10.6 Acceleration Sensors 386
10.7 Force and Pressure Sensors 386
10.7.1 Piezoelectric 386
10.7.2 Force-Sensing Resistor 386
10.7.3 Strain Gauge 387
10.7.4 Antistatic Foam 388
10.8 Torque Sensors 388
10.9 Microswitches 389
10.10 Visible Light and Infrared Sensors 389
10.11 Touch and Tactile Sensors 390
10.12 Proximity Sensors 391
10.12.1 Magnetic Proximity Sensors 391
10.12.2 Optical Proximity Sensors 391
10.12.3 Ultrasonic Proximity Sensors 392
10.12.4 Inductive Proximity Sensors 392
10.12.5 Capacitive Proximity Sensors 393
10.12.6 Eddy Current Proximity Sensors 393
10.13 Range Finders 393
10.13.1 Ultrasonic Range Finders 394
10.13.2 Light-Based Range Finders 395
10.14 Sniff Sensors 396
10.15 Vision Systems 396
10.16 Voice-Recognition Devices 396
10.17 Voice Synthesizers 397
10.18 Remote Center Compliance (RCC) Device 397
10.19 Design Project 400
10.20 Summary 400
References 401
11 Image Processing and Analysis with Vision Systems 403
11.1 Introduction 403
11.2 Basic Concepts 403
11.2.1 Image Processing vs. Image Analysis 403
11.2.2 Two- and Three-Dimensional Image Types 403
11.2.3 The Nature of an Image 404
11.2.4 Acquisition of Images 405
11.2.5 Digital Images 405
11.2.6 Frequency Domain vs. Spatial Domain 406
11.3 Fourier Transform and Frequency Content of a Signal 406
11.4 Frequency Content of an Image: Noise and Edges 409
11.5 Resolution and Quantization 410
11.6 Sampling Theorem 412
11.7 Image-Processing Techniques 415
11.8 Histograms of Images 415
11.9 Thresholding 418
11.10 Spatial Domain Operations Convolution Mask 419
11.11 Connectivity 424
11.12 Noise Reduction 426
11.12.1 Neighborhood Averaging with Convolution Masks 427
11.12.2 Image Averaging 428
11.12.3 Frequency Domain 429
11.12.4 Median Filters 429
11.13 Edge Detection 430
11.14 Sharpening an Image 436
11.15 Hough Transform 437
11.16 Segmentation 440
11.17 Segmentation by Region Growing and Region Splitting 441
11.18 Binary Morphology Operations 444
11.18.1 Thickening Operation 446
11.18.2 Dilation 446
11.18.3 Erosion 447
11.18.4 Skeletonization 447
11.18.5 Open Operation 448
11.18.6 Close Operation 448
11.18.7 Fill Operation 448
11.19 Gray Morphology Operations 449
11.19.1 Erosion 449
11.19.2 Dilation 449
11.20 Image Analysis 449
11.21 Object Recognition by Features 450
11.21.1 Basic Features Used for Object Identification 450
11.21.2 Moments 451
11.21.3 Template Matching 456
11.21.4 Discrete Fourier Descriptors 456
11.21.5 Computed Tomography (CT) 457
11.22 Depth Measurement with Vision Systems 457
11.22.1 Scene Analysis vs. Mapping 457
11.22.2 Range Detection and Depth Analysis 458
11.22.3 Stereo Imaging 458
11.22.4 Scene Analysis with Shading and Sizes 459
11.23 Specialized Lighting 459
11.24 Image Data Compression 460
11.24.1 Intraframe Spatial Domain Techniques 460
11.24.2 Interframe Coding 461
11.24.3 Compression Techniques 461
11.25 Color Images 462
11.26 Heuristics 462
11.27 Applications of Vision Systems 462
11.28 Design Project 463
11.29 Summary 464
References 464
Problems 465
12 Fuzzy Logic Control 475
12.1 Introduction 475
12.2 Fuzzy Control: What Is Needed 476
12.3 Crisp Values vs. Fuzzy Values 476
12.4 Fuzzy Sets: Degrees of Truth and Membership 477
12.5 Fuzzification 477
12.6 Fuzzy Inference Rules 480
12.7 Defuzzification 481
12.7.1 Center of Gravity Method 481
12.7.2 Mamdani Inference Method 481
12.8 Simulation of a Fuzzy Logic Controller 485
12.9 Applications of Fuzzy Logic in Robotics 487
12.10 Design Project 488
12.11 Summary 489
References 489
Problems 490
Appendix A 491
Appendix B 499
Index 501
About the Companion Website xix
1 Fundamentals 1
1.1 Introduction 1
1.2 What Is a Robot? 2
1.3 Classification of Robots 3
1.4 What Is Robotics? 3
1.5 History of Robotics 3
1.6 Advantages and Disadvantages of Robots 4
1.7 Robot Components 5
1.8 Robot Degrees of Freedom 7
1.9 Robot Joints 9
1.10 Robot Coordinates 9
1.11 Robot Reference Frames 11
1.12 Programming Modes 12
1.13 Robot Characteristics 13
1.14 Robot Workspace 13
1.15 Robot Languages 14
1.16 Robot Applications 17
1.17 Other Robots and Applications 23
1.18 Collaborative Robots 28
1.19 Social Issues 29
1.20 Summary 30
References 30
Problems 32
2 Kinematics of Serial Robots: Position Analysis 35
2.1 Introduction 35
2.2 Robots as Mechanisms 35
2.3 Conventions 37
2.4 Matrix Representation 37
2.4.1 Representation of a Point in Space 37
2.4.2 Representation of a Vector in Space 38
2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 40
2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 41
2.4.5 Representation of a Rigid Body 42
2.5 Homogeneous Transformation Matrices 45
2.6 Representation of Transformations 46
2.6.1 Representation of a Pure Translation 46
2.6.2 Representation of a Pure Rotation about an Axis 47
2.6.3 Representation of Combined Transformations 50
2.6.4 Transformations Relative to the Current (Moving) Frame 52
2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 53
2.7 Inverse of Transformation Matrices 54
2.8 Forward and Inverse Kinematics of Robots 59
2.9 Forward and Inverse Kinematic Equations: Position 60
2.9.1 Cartesian (Gantry, Rectangular) Coordinates 60
2.9.2 Cylindrical Coordinates 61
2.9.3 Spherical Coordinates 63
2.9.4 Articulated Coordinates 65
2.10 Forward and Inverse Kinematic Equations: Orientation 65
2.10.1 Roll, Pitch, Yaw (RPY) Angles 65
2.10.2 Euler Angles 68
2.10.3 Articulated Joints 70
2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70
2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of
Robots 70
2.13 The Inverse Kinematic Solution of Robots 84
2.13.1 General Solution for Articulated Robot Arms 86
2.14 Inverse Kinematic Programming of Robots 89
2.15 Dual-Arm Cooperating Robots 91
2.16 Degeneracy and Dexterity 92
2.16.1 Degeneracy 92
2.16.2 Dexterity 93
2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93
2.18 Design Projects 95
2.18.1 Stair-Climbing Robot 96
2.18.2 A 3-DOF Robot 96
2.18.3 A 3-DOF Mobile Robot 98
2.19 Summary 99
References 99
Problems 99
3 Robot Kinematics with Screw-Based Mechanics 111
3.1 Introduction 111
3.2 What Is a Screw? 111
3.3 Rotation about a Screw Axis 112
3.4 Homogenous Transformations about a General Screw Axis 115
3.5 Successive Screw-Based Transformations 119
3.6 Forward and Inverse Position Analysis of an Articulated Robot 120
3.7 Design Projects 127
3.8 Summary 127
Additional Reading 128
Problems 128
4 Kinematics Analysis of Parallel Robots 133
4.1 Introduction 133
4.2 Physical Characteristics of Parallel Robots 134
4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139
4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140
4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 141
4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 143
4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147
4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 147
4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 152
4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 154
4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 160
4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 167
4.6 Other Parallel Robot Configurations 169
4.7 Design Projects 169
4.8 Summary 170
References 170
Problems 170
5 Differential Motions and Velocities 173
5.1 Introduction 173
5.2 Differential Relationships 173
5.3 The Jacobian 174
5.4 Differential versus Large-Scale Motions 176
5.5 Differential Motions of a Frame versus a Robot 177
5.6 Differential Motions of a Frame 178
5.6.1 Differential Translations 178
5.6.2 Differential Rotations about Reference Axes 178
5.6.3 Differential Rotation about a General Axis q 179
5.6.4 Differential Transformations of a Frame 181
5.7 Interpretation of the Differential Change 182
5.8 Differential Changes between Frames 183
5.9 Differential Motions of a Robot and Its Hand Frame 185
5.10 Calculation of the Jacobian 185
5.11 How to Relate the Jacobian and the Differential Operator 188
5.12 The Inverse Jacobian 191
5.13 Calculation of the Jacobian with Screw-Based Mechanics 197
5.14 The Inverse Jacobian for the Screw-Based Method 206
5.15 Calculation of the Jacobians of Parallel Robots 206
5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 207
5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 208
5.16 Design Projects 210
5.16.1 The 3-DOF Robot 210
5.16.2 The 3-DOF Mobile Robot 210
5.17 Summary 210
References 211
Problems 211
6 Dynamic and Force Analysis 219
6.1 Introduction 219
6.2 Lagrangian Mechanics: A Short Overview 220
6.3 Effective Moments of Inertia 229
6.4 Dynamic Equations for Multiple-DOF Robots 229
6.4.1 Kinetic Energy 229
6.4.2 Potential Energy 234
6.4.3 The Lagrangian 234
6.4.4 Robot's Equations of Motion 234
6.5 Static Force Analysis of Robots 239
6.6 Transformation of Forces and Moments between Coordinate Frames 242
6.7 Design Project 244
6.8 Summary 244
References 244
Problems 245
7 Trajectory Planning 247
7.1 Introduction 247
7.2 Path vs. Trajectory 247
7.3 Joint-Space vs. Cartesian-Space Descriptions 248
7.4 Basics of Trajectory Planning 249
7.5 Joint-Space Trajectory Planning 252
7.5.1 Third-Order Polynomial Trajectory Planning 252
7.5.2 Fifth-Order Polynomial Trajectory Planning 255
7.5.3 Linear Segments with Parabolic Blends 257
7.5.4 Linear Segments with Parabolic Blends and Via Points 259
7.5.5 Higher-Order Trajectories 260
7.5.6 Other Trajectories 263
7.6 Cartesian-Space Trajectories 263
7.7 Continuous Trajectory Recording 267
7.8 Design Project 268
7.9 Summary 269
References 269
Problems 269
8 Motion Control Systems 273
8.1 Introduction 273
8.2 Basic Components and Terminology 273
8.3 Block Diagrams 274
8.4 System Dynamics 274
8.5 Laplace Transform 278
8.6 Inverse Laplace Transform 281
8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 281
8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 282
8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles
283
8.7 Transfer Functions 285
8.8 Block Diagram Algebra 288
8.9 Characteristics of First-Order Transfer Functions 290
8.10 Characteristics of Second-Order Transfer Functions 292
8.11 Characteristic Equation: Pole/Zero Mapping 294
8.12 Steady-State Error 296
8.13 Root Locus Method 298
8.14 Proportional Controllers 303
8.15 Proportional-Plus-Integral Controllers 306
8.16 Proportional-Plus-Derivative Controllers 308
8.17 Proportional-Integral-Derivative Controller (PID) 311
8.18 Lead and Lag Compensators 313
8.19 Bode Diagram and Frequency-Domain Analysis 313
8.20 Open-Loop vs. Closed-Loop Applications 314
8.21 Multiple-Input and Multiple-Output Systems 314
8.22 State-Space Control Methodology 316
8.23 Digital Control 320
8.24 Nonlinear Control Systems 322
8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323
8.26 Design Projects 326
8.27 Summary 327
References 327
Problems 327
9 Actuators and Drive Systems 331
9.1 Introduction 331
9.2 Characteristics of Actuating Systems 331
9.2.1 Nominal Characteristics - Weight, Power-to-Weight Ratio, Operating
Pressure, Voltage, and Others 331
9.2.2 Stiffness vs. Compliance 332
9.2.3 Use of Reduction Gears 332
9.3 Comparison of Actuating Systems 335
9.4 Hydraulic Actuators 335
9.5 Pneumatic Devices 337
9.6 Electric Motors 338
9.6.1 Fundamental Differences Between AC- and DC-Type Motors 339
9.6.2 DC Motors 341
9.6.3 AC Motors 344
9.6.4 Brushless DC Motors 345
9.6.5 Direct-Drive Electric Motors 346
9.6.6 Servomotors 346
9.6.7 Stepper Motors 347
9.7 Microprocessor Control of Electric Motors 360
9.7.1 Pulse Width Modulation 361
9.7.2 Direction Control of DC Motors with an H-Bridge 363
9.8 Magnetostrictive Actuators 364
9.9 Shape-Memory Type Metals 364
9.10 Electroactive Polymer Actuators (EAPs) 364
9.11 Speed Reduction 365
9.12 Other Systems 367
9.13 Design Projects 367
9.14 Summary 370
References 371
Problems 372
10 Sensors 375
10.1 Introduction 375
10.2 Sensor Characteristics 375
10.3 Sensor Utilization 377
10.4 Position Sensors 378
10.4.1 Potentiometers 378
10.4.2 Encoders 379
10.4.3 Linear Variable Differential Transformer (LVDT) 382
10.4.4 Resolvers 383
10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 383
10.4.6 Hall-effect Sensors 384
10.4.7 Global Positioning System (GPS) 384
10.4.8 Other Devices 385
10.5 Velocity Sensors 385
10.5.1 Encoders 385
10.5.2 Tachometers 385
10.5.3 Differentiation of Position Signal 386
10.6 Acceleration Sensors 386
10.7 Force and Pressure Sensors 386
10.7.1 Piezoelectric 386
10.7.2 Force-Sensing Resistor 386
10.7.3 Strain Gauge 387
10.7.4 Antistatic Foam 388
10.8 Torque Sensors 388
10.9 Microswitches 389
10.10 Visible Light and Infrared Sensors 389
10.11 Touch and Tactile Sensors 390
10.12 Proximity Sensors 391
10.12.1 Magnetic Proximity Sensors 391
10.12.2 Optical Proximity Sensors 391
10.12.3 Ultrasonic Proximity Sensors 392
10.12.4 Inductive Proximity Sensors 392
10.12.5 Capacitive Proximity Sensors 393
10.12.6 Eddy Current Proximity Sensors 393
10.13 Range Finders 393
10.13.1 Ultrasonic Range Finders 394
10.13.2 Light-Based Range Finders 395
10.14 Sniff Sensors 396
10.15 Vision Systems 396
10.16 Voice-Recognition Devices 396
10.17 Voice Synthesizers 397
10.18 Remote Center Compliance (RCC) Device 397
10.19 Design Project 400
10.20 Summary 400
References 401
11 Image Processing and Analysis with Vision Systems 403
11.1 Introduction 403
11.2 Basic Concepts 403
11.2.1 Image Processing vs. Image Analysis 403
11.2.2 Two- and Three-Dimensional Image Types 403
11.2.3 The Nature of an Image 404
11.2.4 Acquisition of Images 405
11.2.5 Digital Images 405
11.2.6 Frequency Domain vs. Spatial Domain 406
11.3 Fourier Transform and Frequency Content of a Signal 406
11.4 Frequency Content of an Image: Noise and Edges 409
11.5 Resolution and Quantization 410
11.6 Sampling Theorem 412
11.7 Image-Processing Techniques 415
11.8 Histograms of Images 415
11.9 Thresholding 418
11.10 Spatial Domain Operations Convolution Mask 419
11.11 Connectivity 424
11.12 Noise Reduction 426
11.12.1 Neighborhood Averaging with Convolution Masks 427
11.12.2 Image Averaging 428
11.12.3 Frequency Domain 429
11.12.4 Median Filters 429
11.13 Edge Detection 430
11.14 Sharpening an Image 436
11.15 Hough Transform 437
11.16 Segmentation 440
11.17 Segmentation by Region Growing and Region Splitting 441
11.18 Binary Morphology Operations 444
11.18.1 Thickening Operation 446
11.18.2 Dilation 446
11.18.3 Erosion 447
11.18.4 Skeletonization 447
11.18.5 Open Operation 448
11.18.6 Close Operation 448
11.18.7 Fill Operation 448
11.19 Gray Morphology Operations 449
11.19.1 Erosion 449
11.19.2 Dilation 449
11.20 Image Analysis 449
11.21 Object Recognition by Features 450
11.21.1 Basic Features Used for Object Identification 450
11.21.2 Moments 451
11.21.3 Template Matching 456
11.21.4 Discrete Fourier Descriptors 456
11.21.5 Computed Tomography (CT) 457
11.22 Depth Measurement with Vision Systems 457
11.22.1 Scene Analysis vs. Mapping 457
11.22.2 Range Detection and Depth Analysis 458
11.22.3 Stereo Imaging 458
11.22.4 Scene Analysis with Shading and Sizes 459
11.23 Specialized Lighting 459
11.24 Image Data Compression 460
11.24.1 Intraframe Spatial Domain Techniques 460
11.24.2 Interframe Coding 461
11.24.3 Compression Techniques 461
11.25 Color Images 462
11.26 Heuristics 462
11.27 Applications of Vision Systems 462
11.28 Design Project 463
11.29 Summary 464
References 464
Problems 465
12 Fuzzy Logic Control 475
12.1 Introduction 475
12.2 Fuzzy Control: What Is Needed 476
12.3 Crisp Values vs. Fuzzy Values 476
12.4 Fuzzy Sets: Degrees of Truth and Membership 477
12.5 Fuzzification 477
12.6 Fuzzy Inference Rules 480
12.7 Defuzzification 481
12.7.1 Center of Gravity Method 481
12.7.2 Mamdani Inference Method 481
12.8 Simulation of a Fuzzy Logic Controller 485
12.9 Applications of Fuzzy Logic in Robotics 487
12.10 Design Project 488
12.11 Summary 489
References 489
Problems 490
Appendix A 491
Appendix B 499
Index 501
Preface xv
About the Companion Website xix
1 Fundamentals 1
1.1 Introduction 1
1.2 What Is a Robot? 2
1.3 Classification of Robots 3
1.4 What Is Robotics? 3
1.5 History of Robotics 3
1.6 Advantages and Disadvantages of Robots 4
1.7 Robot Components 5
1.8 Robot Degrees of Freedom 7
1.9 Robot Joints 9
1.10 Robot Coordinates 9
1.11 Robot Reference Frames 11
1.12 Programming Modes 12
1.13 Robot Characteristics 13
1.14 Robot Workspace 13
1.15 Robot Languages 14
1.16 Robot Applications 17
1.17 Other Robots and Applications 23
1.18 Collaborative Robots 28
1.19 Social Issues 29
1.20 Summary 30
References 30
Problems 32
2 Kinematics of Serial Robots: Position Analysis 35
2.1 Introduction 35
2.2 Robots as Mechanisms 35
2.3 Conventions 37
2.4 Matrix Representation 37
2.4.1 Representation of a Point in Space 37
2.4.2 Representation of a Vector in Space 38
2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 40
2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 41
2.4.5 Representation of a Rigid Body 42
2.5 Homogeneous Transformation Matrices 45
2.6 Representation of Transformations 46
2.6.1 Representation of a Pure Translation 46
2.6.2 Representation of a Pure Rotation about an Axis 47
2.6.3 Representation of Combined Transformations 50
2.6.4 Transformations Relative to the Current (Moving) Frame 52
2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 53
2.7 Inverse of Transformation Matrices 54
2.8 Forward and Inverse Kinematics of Robots 59
2.9 Forward and Inverse Kinematic Equations: Position 60
2.9.1 Cartesian (Gantry, Rectangular) Coordinates 60
2.9.2 Cylindrical Coordinates 61
2.9.3 Spherical Coordinates 63
2.9.4 Articulated Coordinates 65
2.10 Forward and Inverse Kinematic Equations: Orientation 65
2.10.1 Roll, Pitch, Yaw (RPY) Angles 65
2.10.2 Euler Angles 68
2.10.3 Articulated Joints 70
2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70
2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of
Robots 70
2.13 The Inverse Kinematic Solution of Robots 84
2.13.1 General Solution for Articulated Robot Arms 86
2.14 Inverse Kinematic Programming of Robots 89
2.15 Dual-Arm Cooperating Robots 91
2.16 Degeneracy and Dexterity 92
2.16.1 Degeneracy 92
2.16.2 Dexterity 93
2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93
2.18 Design Projects 95
2.18.1 Stair-Climbing Robot 96
2.18.2 A 3-DOF Robot 96
2.18.3 A 3-DOF Mobile Robot 98
2.19 Summary 99
References 99
Problems 99
3 Robot Kinematics with Screw-Based Mechanics 111
3.1 Introduction 111
3.2 What Is a Screw? 111
3.3 Rotation about a Screw Axis 112
3.4 Homogenous Transformations about a General Screw Axis 115
3.5 Successive Screw-Based Transformations 119
3.6 Forward and Inverse Position Analysis of an Articulated Robot 120
3.7 Design Projects 127
3.8 Summary 127
Additional Reading 128
Problems 128
4 Kinematics Analysis of Parallel Robots 133
4.1 Introduction 133
4.2 Physical Characteristics of Parallel Robots 134
4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139
4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140
4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 141
4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 143
4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147
4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 147
4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 152
4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 154
4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 160
4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 167
4.6 Other Parallel Robot Configurations 169
4.7 Design Projects 169
4.8 Summary 170
References 170
Problems 170
5 Differential Motions and Velocities 173
5.1 Introduction 173
5.2 Differential Relationships 173
5.3 The Jacobian 174
5.4 Differential versus Large-Scale Motions 176
5.5 Differential Motions of a Frame versus a Robot 177
5.6 Differential Motions of a Frame 178
5.6.1 Differential Translations 178
5.6.2 Differential Rotations about Reference Axes 178
5.6.3 Differential Rotation about a General Axis q 179
5.6.4 Differential Transformations of a Frame 181
5.7 Interpretation of the Differential Change 182
5.8 Differential Changes between Frames 183
5.9 Differential Motions of a Robot and Its Hand Frame 185
5.10 Calculation of the Jacobian 185
5.11 How to Relate the Jacobian and the Differential Operator 188
5.12 The Inverse Jacobian 191
5.13 Calculation of the Jacobian with Screw-Based Mechanics 197
5.14 The Inverse Jacobian for the Screw-Based Method 206
5.15 Calculation of the Jacobians of Parallel Robots 206
5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 207
5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 208
5.16 Design Projects 210
5.16.1 The 3-DOF Robot 210
5.16.2 The 3-DOF Mobile Robot 210
5.17 Summary 210
References 211
Problems 211
6 Dynamic and Force Analysis 219
6.1 Introduction 219
6.2 Lagrangian Mechanics: A Short Overview 220
6.3 Effective Moments of Inertia 229
6.4 Dynamic Equations for Multiple-DOF Robots 229
6.4.1 Kinetic Energy 229
6.4.2 Potential Energy 234
6.4.3 The Lagrangian 234
6.4.4 Robot's Equations of Motion 234
6.5 Static Force Analysis of Robots 239
6.6 Transformation of Forces and Moments between Coordinate Frames 242
6.7 Design Project 244
6.8 Summary 244
References 244
Problems 245
7 Trajectory Planning 247
7.1 Introduction 247
7.2 Path vs. Trajectory 247
7.3 Joint-Space vs. Cartesian-Space Descriptions 248
7.4 Basics of Trajectory Planning 249
7.5 Joint-Space Trajectory Planning 252
7.5.1 Third-Order Polynomial Trajectory Planning 252
7.5.2 Fifth-Order Polynomial Trajectory Planning 255
7.5.3 Linear Segments with Parabolic Blends 257
7.5.4 Linear Segments with Parabolic Blends and Via Points 259
7.5.5 Higher-Order Trajectories 260
7.5.6 Other Trajectories 263
7.6 Cartesian-Space Trajectories 263
7.7 Continuous Trajectory Recording 267
7.8 Design Project 268
7.9 Summary 269
References 269
Problems 269
8 Motion Control Systems 273
8.1 Introduction 273
8.2 Basic Components and Terminology 273
8.3 Block Diagrams 274
8.4 System Dynamics 274
8.5 Laplace Transform 278
8.6 Inverse Laplace Transform 281
8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 281
8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 282
8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles
283
8.7 Transfer Functions 285
8.8 Block Diagram Algebra 288
8.9 Characteristics of First-Order Transfer Functions 290
8.10 Characteristics of Second-Order Transfer Functions 292
8.11 Characteristic Equation: Pole/Zero Mapping 294
8.12 Steady-State Error 296
8.13 Root Locus Method 298
8.14 Proportional Controllers 303
8.15 Proportional-Plus-Integral Controllers 306
8.16 Proportional-Plus-Derivative Controllers 308
8.17 Proportional-Integral-Derivative Controller (PID) 311
8.18 Lead and Lag Compensators 313
8.19 Bode Diagram and Frequency-Domain Analysis 313
8.20 Open-Loop vs. Closed-Loop Applications 314
8.21 Multiple-Input and Multiple-Output Systems 314
8.22 State-Space Control Methodology 316
8.23 Digital Control 320
8.24 Nonlinear Control Systems 322
8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323
8.26 Design Projects 326
8.27 Summary 327
References 327
Problems 327
9 Actuators and Drive Systems 331
9.1 Introduction 331
9.2 Characteristics of Actuating Systems 331
9.2.1 Nominal Characteristics - Weight, Power-to-Weight Ratio, Operating
Pressure, Voltage, and Others 331
9.2.2 Stiffness vs. Compliance 332
9.2.3 Use of Reduction Gears 332
9.3 Comparison of Actuating Systems 335
9.4 Hydraulic Actuators 335
9.5 Pneumatic Devices 337
9.6 Electric Motors 338
9.6.1 Fundamental Differences Between AC- and DC-Type Motors 339
9.6.2 DC Motors 341
9.6.3 AC Motors 344
9.6.4 Brushless DC Motors 345
9.6.5 Direct-Drive Electric Motors 346
9.6.6 Servomotors 346
9.6.7 Stepper Motors 347
9.7 Microprocessor Control of Electric Motors 360
9.7.1 Pulse Width Modulation 361
9.7.2 Direction Control of DC Motors with an H-Bridge 363
9.8 Magnetostrictive Actuators 364
9.9 Shape-Memory Type Metals 364
9.10 Electroactive Polymer Actuators (EAPs) 364
9.11 Speed Reduction 365
9.12 Other Systems 367
9.13 Design Projects 367
9.14 Summary 370
References 371
Problems 372
10 Sensors 375
10.1 Introduction 375
10.2 Sensor Characteristics 375
10.3 Sensor Utilization 377
10.4 Position Sensors 378
10.4.1 Potentiometers 378
10.4.2 Encoders 379
10.4.3 Linear Variable Differential Transformer (LVDT) 382
10.4.4 Resolvers 383
10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 383
10.4.6 Hall-effect Sensors 384
10.4.7 Global Positioning System (GPS) 384
10.4.8 Other Devices 385
10.5 Velocity Sensors 385
10.5.1 Encoders 385
10.5.2 Tachometers 385
10.5.3 Differentiation of Position Signal 386
10.6 Acceleration Sensors 386
10.7 Force and Pressure Sensors 386
10.7.1 Piezoelectric 386
10.7.2 Force-Sensing Resistor 386
10.7.3 Strain Gauge 387
10.7.4 Antistatic Foam 388
10.8 Torque Sensors 388
10.9 Microswitches 389
10.10 Visible Light and Infrared Sensors 389
10.11 Touch and Tactile Sensors 390
10.12 Proximity Sensors 391
10.12.1 Magnetic Proximity Sensors 391
10.12.2 Optical Proximity Sensors 391
10.12.3 Ultrasonic Proximity Sensors 392
10.12.4 Inductive Proximity Sensors 392
10.12.5 Capacitive Proximity Sensors 393
10.12.6 Eddy Current Proximity Sensors 393
10.13 Range Finders 393
10.13.1 Ultrasonic Range Finders 394
10.13.2 Light-Based Range Finders 395
10.14 Sniff Sensors 396
10.15 Vision Systems 396
10.16 Voice-Recognition Devices 396
10.17 Voice Synthesizers 397
10.18 Remote Center Compliance (RCC) Device 397
10.19 Design Project 400
10.20 Summary 400
References 401
11 Image Processing and Analysis with Vision Systems 403
11.1 Introduction 403
11.2 Basic Concepts 403
11.2.1 Image Processing vs. Image Analysis 403
11.2.2 Two- and Three-Dimensional Image Types 403
11.2.3 The Nature of an Image 404
11.2.4 Acquisition of Images 405
11.2.5 Digital Images 405
11.2.6 Frequency Domain vs. Spatial Domain 406
11.3 Fourier Transform and Frequency Content of a Signal 406
11.4 Frequency Content of an Image: Noise and Edges 409
11.5 Resolution and Quantization 410
11.6 Sampling Theorem 412
11.7 Image-Processing Techniques 415
11.8 Histograms of Images 415
11.9 Thresholding 418
11.10 Spatial Domain Operations Convolution Mask 419
11.11 Connectivity 424
11.12 Noise Reduction 426
11.12.1 Neighborhood Averaging with Convolution Masks 427
11.12.2 Image Averaging 428
11.12.3 Frequency Domain 429
11.12.4 Median Filters 429
11.13 Edge Detection 430
11.14 Sharpening an Image 436
11.15 Hough Transform 437
11.16 Segmentation 440
11.17 Segmentation by Region Growing and Region Splitting 441
11.18 Binary Morphology Operations 444
11.18.1 Thickening Operation 446
11.18.2 Dilation 446
11.18.3 Erosion 447
11.18.4 Skeletonization 447
11.18.5 Open Operation 448
11.18.6 Close Operation 448
11.18.7 Fill Operation 448
11.19 Gray Morphology Operations 449
11.19.1 Erosion 449
11.19.2 Dilation 449
11.20 Image Analysis 449
11.21 Object Recognition by Features 450
11.21.1 Basic Features Used for Object Identification 450
11.21.2 Moments 451
11.21.3 Template Matching 456
11.21.4 Discrete Fourier Descriptors 456
11.21.5 Computed Tomography (CT) 457
11.22 Depth Measurement with Vision Systems 457
11.22.1 Scene Analysis vs. Mapping 457
11.22.2 Range Detection and Depth Analysis 458
11.22.3 Stereo Imaging 458
11.22.4 Scene Analysis with Shading and Sizes 459
11.23 Specialized Lighting 459
11.24 Image Data Compression 460
11.24.1 Intraframe Spatial Domain Techniques 460
11.24.2 Interframe Coding 461
11.24.3 Compression Techniques 461
11.25 Color Images 462
11.26 Heuristics 462
11.27 Applications of Vision Systems 462
11.28 Design Project 463
11.29 Summary 464
References 464
Problems 465
12 Fuzzy Logic Control 475
12.1 Introduction 475
12.2 Fuzzy Control: What Is Needed 476
12.3 Crisp Values vs. Fuzzy Values 476
12.4 Fuzzy Sets: Degrees of Truth and Membership 477
12.5 Fuzzification 477
12.6 Fuzzy Inference Rules 480
12.7 Defuzzification 481
12.7.1 Center of Gravity Method 481
12.7.2 Mamdani Inference Method 481
12.8 Simulation of a Fuzzy Logic Controller 485
12.9 Applications of Fuzzy Logic in Robotics 487
12.10 Design Project 488
12.11 Summary 489
References 489
Problems 490
Appendix A 491
Appendix B 499
Index 501
About the Companion Website xix
1 Fundamentals 1
1.1 Introduction 1
1.2 What Is a Robot? 2
1.3 Classification of Robots 3
1.4 What Is Robotics? 3
1.5 History of Robotics 3
1.6 Advantages and Disadvantages of Robots 4
1.7 Robot Components 5
1.8 Robot Degrees of Freedom 7
1.9 Robot Joints 9
1.10 Robot Coordinates 9
1.11 Robot Reference Frames 11
1.12 Programming Modes 12
1.13 Robot Characteristics 13
1.14 Robot Workspace 13
1.15 Robot Languages 14
1.16 Robot Applications 17
1.17 Other Robots and Applications 23
1.18 Collaborative Robots 28
1.19 Social Issues 29
1.20 Summary 30
References 30
Problems 32
2 Kinematics of Serial Robots: Position Analysis 35
2.1 Introduction 35
2.2 Robots as Mechanisms 35
2.3 Conventions 37
2.4 Matrix Representation 37
2.4.1 Representation of a Point in Space 37
2.4.2 Representation of a Vector in Space 38
2.4.3 Representation of a Frame at the Origin of a Fixed-Reference Frame 40
2.4.4 Representation of a Frame Relative to a Fixed Reference Frame 41
2.4.5 Representation of a Rigid Body 42
2.5 Homogeneous Transformation Matrices 45
2.6 Representation of Transformations 46
2.6.1 Representation of a Pure Translation 46
2.6.2 Representation of a Pure Rotation about an Axis 47
2.6.3 Representation of Combined Transformations 50
2.6.4 Transformations Relative to the Current (Moving) Frame 52
2.6.5 Mixed Transformations Relative to Rotating and Reference Frames 53
2.7 Inverse of Transformation Matrices 54
2.8 Forward and Inverse Kinematics of Robots 59
2.9 Forward and Inverse Kinematic Equations: Position 60
2.9.1 Cartesian (Gantry, Rectangular) Coordinates 60
2.9.2 Cylindrical Coordinates 61
2.9.3 Spherical Coordinates 63
2.9.4 Articulated Coordinates 65
2.10 Forward and Inverse Kinematic Equations: Orientation 65
2.10.1 Roll, Pitch, Yaw (RPY) Angles 65
2.10.2 Euler Angles 68
2.10.3 Articulated Joints 70
2.11 Forward and Inverse Kinematic Equations: Position and Orientation 70
2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of
Robots 70
2.13 The Inverse Kinematic Solution of Robots 84
2.13.1 General Solution for Articulated Robot Arms 86
2.14 Inverse Kinematic Programming of Robots 89
2.15 Dual-Arm Cooperating Robots 91
2.16 Degeneracy and Dexterity 92
2.16.1 Degeneracy 92
2.16.2 Dexterity 93
2.17 The Fundamental Problem with the Denavit-Hartenberg Representation 93
2.18 Design Projects 95
2.18.1 Stair-Climbing Robot 96
2.18.2 A 3-DOF Robot 96
2.18.3 A 3-DOF Mobile Robot 98
2.19 Summary 99
References 99
Problems 99
3 Robot Kinematics with Screw-Based Mechanics 111
3.1 Introduction 111
3.2 What Is a Screw? 111
3.3 Rotation about a Screw Axis 112
3.4 Homogenous Transformations about a General Screw Axis 115
3.5 Successive Screw-Based Transformations 119
3.6 Forward and Inverse Position Analysis of an Articulated Robot 120
3.7 Design Projects 127
3.8 Summary 127
Additional Reading 128
Problems 128
4 Kinematics Analysis of Parallel Robots 133
4.1 Introduction 133
4.2 Physical Characteristics of Parallel Robots 134
4.3 The Denavit-Hartenberg Approach vs. the Direct Kinematic Approach 139
4.4 Forward and Inverse Kinematics of Planar Parallel Robots 140
4.4.1 Kinematic Analysis of a 3-RPR Planar Parallel Robot 141
4.4.2 Kinematic Analysis of a 3-RRR Planar Parallel Robot 143
4.5 Forward and Inverse Kinematics of Spatial Parallel Robots 147
4.5.1 Kinematic Analysis of a Generic 6-6 Stewart-Gough Platform 147
4.5.2 Kinematic Analysis of a Generic 6-3 Stewart-Gough Platform 152
4.5.3 Kinematic Analysis of a 3-Axis RSS-Type Parallel Robot 154
4.5.4 Kinematic Analysis of a 4-Axis RSS-Type Parallel Robot 160
4.5.5 Kinematic Analysis of a 3-Axis PSS-Type Parallel Robot 167
4.6 Other Parallel Robot Configurations 169
4.7 Design Projects 169
4.8 Summary 170
References 170
Problems 170
5 Differential Motions and Velocities 173
5.1 Introduction 173
5.2 Differential Relationships 173
5.3 The Jacobian 174
5.4 Differential versus Large-Scale Motions 176
5.5 Differential Motions of a Frame versus a Robot 177
5.6 Differential Motions of a Frame 178
5.6.1 Differential Translations 178
5.6.2 Differential Rotations about Reference Axes 178
5.6.3 Differential Rotation about a General Axis q 179
5.6.4 Differential Transformations of a Frame 181
5.7 Interpretation of the Differential Change 182
5.8 Differential Changes between Frames 183
5.9 Differential Motions of a Robot and Its Hand Frame 185
5.10 Calculation of the Jacobian 185
5.11 How to Relate the Jacobian and the Differential Operator 188
5.12 The Inverse Jacobian 191
5.13 Calculation of the Jacobian with Screw-Based Mechanics 197
5.14 The Inverse Jacobian for the Screw-Based Method 206
5.15 Calculation of the Jacobians of Parallel Robots 206
5.15.1 The Jacobian of a Planar 3-RRR Parallel Robot 207
5.15.2 The Jacobian of a Generic 6-6 Stewart-Gough Parallel Robot 208
5.16 Design Projects 210
5.16.1 The 3-DOF Robot 210
5.16.2 The 3-DOF Mobile Robot 210
5.17 Summary 210
References 211
Problems 211
6 Dynamic and Force Analysis 219
6.1 Introduction 219
6.2 Lagrangian Mechanics: A Short Overview 220
6.3 Effective Moments of Inertia 229
6.4 Dynamic Equations for Multiple-DOF Robots 229
6.4.1 Kinetic Energy 229
6.4.2 Potential Energy 234
6.4.3 The Lagrangian 234
6.4.4 Robot's Equations of Motion 234
6.5 Static Force Analysis of Robots 239
6.6 Transformation of Forces and Moments between Coordinate Frames 242
6.7 Design Project 244
6.8 Summary 244
References 244
Problems 245
7 Trajectory Planning 247
7.1 Introduction 247
7.2 Path vs. Trajectory 247
7.3 Joint-Space vs. Cartesian-Space Descriptions 248
7.4 Basics of Trajectory Planning 249
7.5 Joint-Space Trajectory Planning 252
7.5.1 Third-Order Polynomial Trajectory Planning 252
7.5.2 Fifth-Order Polynomial Trajectory Planning 255
7.5.3 Linear Segments with Parabolic Blends 257
7.5.4 Linear Segments with Parabolic Blends and Via Points 259
7.5.5 Higher-Order Trajectories 260
7.5.6 Other Trajectories 263
7.6 Cartesian-Space Trajectories 263
7.7 Continuous Trajectory Recording 267
7.8 Design Project 268
7.9 Summary 269
References 269
Problems 269
8 Motion Control Systems 273
8.1 Introduction 273
8.2 Basic Components and Terminology 273
8.3 Block Diagrams 274
8.4 System Dynamics 274
8.5 Laplace Transform 278
8.6 Inverse Laplace Transform 281
8.6.1 Partial Fraction Expansion When F(s) Involves Only Distinct Poles 281
8.6.2 Partial Fraction Expansion When F(s) Involves Repeated Poles 282
8.6.3 Partial Fraction Expansion When F(s) Involves Complex Conjugate Poles
283
8.7 Transfer Functions 285
8.8 Block Diagram Algebra 288
8.9 Characteristics of First-Order Transfer Functions 290
8.10 Characteristics of Second-Order Transfer Functions 292
8.11 Characteristic Equation: Pole/Zero Mapping 294
8.12 Steady-State Error 296
8.13 Root Locus Method 298
8.14 Proportional Controllers 303
8.15 Proportional-Plus-Integral Controllers 306
8.16 Proportional-Plus-Derivative Controllers 308
8.17 Proportional-Integral-Derivative Controller (PID) 311
8.18 Lead and Lag Compensators 313
8.19 Bode Diagram and Frequency-Domain Analysis 313
8.20 Open-Loop vs. Closed-Loop Applications 314
8.21 Multiple-Input and Multiple-Output Systems 314
8.22 State-Space Control Methodology 316
8.23 Digital Control 320
8.24 Nonlinear Control Systems 322
8.25 Electromechanical Systems Dynamics: Robot Actuation and Control 323
8.26 Design Projects 326
8.27 Summary 327
References 327
Problems 327
9 Actuators and Drive Systems 331
9.1 Introduction 331
9.2 Characteristics of Actuating Systems 331
9.2.1 Nominal Characteristics - Weight, Power-to-Weight Ratio, Operating
Pressure, Voltage, and Others 331
9.2.2 Stiffness vs. Compliance 332
9.2.3 Use of Reduction Gears 332
9.3 Comparison of Actuating Systems 335
9.4 Hydraulic Actuators 335
9.5 Pneumatic Devices 337
9.6 Electric Motors 338
9.6.1 Fundamental Differences Between AC- and DC-Type Motors 339
9.6.2 DC Motors 341
9.6.3 AC Motors 344
9.6.4 Brushless DC Motors 345
9.6.5 Direct-Drive Electric Motors 346
9.6.6 Servomotors 346
9.6.7 Stepper Motors 347
9.7 Microprocessor Control of Electric Motors 360
9.7.1 Pulse Width Modulation 361
9.7.2 Direction Control of DC Motors with an H-Bridge 363
9.8 Magnetostrictive Actuators 364
9.9 Shape-Memory Type Metals 364
9.10 Electroactive Polymer Actuators (EAPs) 364
9.11 Speed Reduction 365
9.12 Other Systems 367
9.13 Design Projects 367
9.14 Summary 370
References 371
Problems 372
10 Sensors 375
10.1 Introduction 375
10.2 Sensor Characteristics 375
10.3 Sensor Utilization 377
10.4 Position Sensors 378
10.4.1 Potentiometers 378
10.4.2 Encoders 379
10.4.3 Linear Variable Differential Transformer (LVDT) 382
10.4.4 Resolvers 383
10.4.5 (Linear) Magnetostrictive Displacement Transducer (LMDT or MDT) 383
10.4.6 Hall-effect Sensors 384
10.4.7 Global Positioning System (GPS) 384
10.4.8 Other Devices 385
10.5 Velocity Sensors 385
10.5.1 Encoders 385
10.5.2 Tachometers 385
10.5.3 Differentiation of Position Signal 386
10.6 Acceleration Sensors 386
10.7 Force and Pressure Sensors 386
10.7.1 Piezoelectric 386
10.7.2 Force-Sensing Resistor 386
10.7.3 Strain Gauge 387
10.7.4 Antistatic Foam 388
10.8 Torque Sensors 388
10.9 Microswitches 389
10.10 Visible Light and Infrared Sensors 389
10.11 Touch and Tactile Sensors 390
10.12 Proximity Sensors 391
10.12.1 Magnetic Proximity Sensors 391
10.12.2 Optical Proximity Sensors 391
10.12.3 Ultrasonic Proximity Sensors 392
10.12.4 Inductive Proximity Sensors 392
10.12.5 Capacitive Proximity Sensors 393
10.12.6 Eddy Current Proximity Sensors 393
10.13 Range Finders 393
10.13.1 Ultrasonic Range Finders 394
10.13.2 Light-Based Range Finders 395
10.14 Sniff Sensors 396
10.15 Vision Systems 396
10.16 Voice-Recognition Devices 396
10.17 Voice Synthesizers 397
10.18 Remote Center Compliance (RCC) Device 397
10.19 Design Project 400
10.20 Summary 400
References 401
11 Image Processing and Analysis with Vision Systems 403
11.1 Introduction 403
11.2 Basic Concepts 403
11.2.1 Image Processing vs. Image Analysis 403
11.2.2 Two- and Three-Dimensional Image Types 403
11.2.3 The Nature of an Image 404
11.2.4 Acquisition of Images 405
11.2.5 Digital Images 405
11.2.6 Frequency Domain vs. Spatial Domain 406
11.3 Fourier Transform and Frequency Content of a Signal 406
11.4 Frequency Content of an Image: Noise and Edges 409
11.5 Resolution and Quantization 410
11.6 Sampling Theorem 412
11.7 Image-Processing Techniques 415
11.8 Histograms of Images 415
11.9 Thresholding 418
11.10 Spatial Domain Operations Convolution Mask 419
11.11 Connectivity 424
11.12 Noise Reduction 426
11.12.1 Neighborhood Averaging with Convolution Masks 427
11.12.2 Image Averaging 428
11.12.3 Frequency Domain 429
11.12.4 Median Filters 429
11.13 Edge Detection 430
11.14 Sharpening an Image 436
11.15 Hough Transform 437
11.16 Segmentation 440
11.17 Segmentation by Region Growing and Region Splitting 441
11.18 Binary Morphology Operations 444
11.18.1 Thickening Operation 446
11.18.2 Dilation 446
11.18.3 Erosion 447
11.18.4 Skeletonization 447
11.18.5 Open Operation 448
11.18.6 Close Operation 448
11.18.7 Fill Operation 448
11.19 Gray Morphology Operations 449
11.19.1 Erosion 449
11.19.2 Dilation 449
11.20 Image Analysis 449
11.21 Object Recognition by Features 450
11.21.1 Basic Features Used for Object Identification 450
11.21.2 Moments 451
11.21.3 Template Matching 456
11.21.4 Discrete Fourier Descriptors 456
11.21.5 Computed Tomography (CT) 457
11.22 Depth Measurement with Vision Systems 457
11.22.1 Scene Analysis vs. Mapping 457
11.22.2 Range Detection and Depth Analysis 458
11.22.3 Stereo Imaging 458
11.22.4 Scene Analysis with Shading and Sizes 459
11.23 Specialized Lighting 459
11.24 Image Data Compression 460
11.24.1 Intraframe Spatial Domain Techniques 460
11.24.2 Interframe Coding 461
11.24.3 Compression Techniques 461
11.25 Color Images 462
11.26 Heuristics 462
11.27 Applications of Vision Systems 462
11.28 Design Project 463
11.29 Summary 464
References 464
Problems 465
12 Fuzzy Logic Control 475
12.1 Introduction 475
12.2 Fuzzy Control: What Is Needed 476
12.3 Crisp Values vs. Fuzzy Values 476
12.4 Fuzzy Sets: Degrees of Truth and Membership 477
12.5 Fuzzification 477
12.6 Fuzzy Inference Rules 480
12.7 Defuzzification 481
12.7.1 Center of Gravity Method 481
12.7.2 Mamdani Inference Method 481
12.8 Simulation of a Fuzzy Logic Controller 485
12.9 Applications of Fuzzy Logic in Robotics 487
12.10 Design Project 488
12.11 Summary 489
References 489
Problems 490
Appendix A 491
Appendix B 499
Index 501