This text is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. It aims at providing some insight into basic abstract analysis which is now the contextual language of much modern mathematics. Although it is assumed that the student will have familiarity with elementary real and complex analysis and linear algebra and have studied a course in the analysis of metric spaces, a knowledge of integration theory or general topology is not required. The theme of this text concerns structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. But the implications of the general theory are illustrated with a great variety of example spaces.
Table of contents:
1. Basic properties of normed linear spaces; 2. Classes of example spaces; 3. Orthonormal sets in inner product spaces; 4. Norming mappings and forming duals and operator algebras; 5. The shape of the dual; 6. The Hahn-Banach theorem; 7. The natural embedding and reflexivity; 8. Subreflexivity; 9. Baire category theory for metric spaces; 10. The open mapping and closed graph theorems; 11. The uniform boundedness theorem; 12. Conjugate mappings; 13. Adjoint operators on Hilbert space; 14. Projection operators; 15. Compact operators; 16. The spectrum; 17. The spectrum of a continuous linear operator; 18. The spectrum of a compact operator; 19. The spectral theorem for compact normal operators on Hilbert space; 20. The spectral theorem for compact operators on Hilbert space; Appendices. A1. Zorn's lemma; A2. Numerical equivalence; A3. Hamel basis.
This is a basic course, for senior undergraduate and beginning postgraduate students, on the structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. The implications of the general theory are illustrated with a great variety of example spaces.
This is a basic course in functional analysis for senior undergraduate and beginning postgraduate students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Table of contents:
1. Basic properties of normed linear spaces; 2. Classes of example spaces; 3. Orthonormal sets in inner product spaces; 4. Norming mappings and forming duals and operator algebras; 5. The shape of the dual; 6. The Hahn-Banach theorem; 7. The natural embedding and reflexivity; 8. Subreflexivity; 9. Baire category theory for metric spaces; 10. The open mapping and closed graph theorems; 11. The uniform boundedness theorem; 12. Conjugate mappings; 13. Adjoint operators on Hilbert space; 14. Projection operators; 15. Compact operators; 16. The spectrum; 17. The spectrum of a continuous linear operator; 18. The spectrum of a compact operator; 19. The spectral theorem for compact normal operators on Hilbert space; 20. The spectral theorem for compact operators on Hilbert space; Appendices. A1. Zorn's lemma; A2. Numerical equivalence; A3. Hamel basis.
This is a basic course, for senior undergraduate and beginning postgraduate students, on the structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. The implications of the general theory are illustrated with a great variety of example spaces.
This is a basic course in functional analysis for senior undergraduate and beginning postgraduate students.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.