Gilbert HectorIntroduction to the Geometry of Foliations, Part B
Foliations of Codimension One
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
IV - Basic Constructions and Examples.- 1. General setting in co dimension one.- 2. Topological dynamics.- 3. Foliated bundles; examples.- 4. Gluing foliations together.- 5. Turbulization.- 6. Codimension-one foliations on spheres.- V - Structure of Codimension-One Foliations.- 1. Transverse orientability.- 2. Holonomy of compact leaves.- 3. Saturated open sets of compact manifolds.- 4. Centre of a compact foliated manifold; global stability.- VI - Exceptional Minimal Sets of Compact Foliated Manifolds; A Theorem of Sacksteder.- 1. Resilient leaves.- 2. The theorem of Denjoy-Sacksteder.- 3. Sacksteder's theorem.- 4. The theorem of Schwartz.- VII - One Sided Holonomy; Vanishing Cycles and Closed Transversals.- 1. Preliminaries on one-sided holonomy and vanishing cycles.- 2. Transverse foliation* of D2 × IR.- 3. Existence of one-sided holonomy and vanishing cycles.- VIII - Foliations without Holonomy.- 1. Closed 1-forms without singularities.- 2. Foliations without holonomy versus equivariant fibrations.- 3. Holonomy representation and cohomology direction.- IX - Growth.- 1. Growth of groups, homogeneous spaces and riemannian manifolds.- 2. Growth of leave in foliatoons on compact manifolds.- X - Holonomy Invariant Measures.- 1. Invariant measures for subgroups of Homeo (?) or Homeo(S1).- 2. Foliations with holonomy invariant measure.