This introduction is designed for graduate students who have some knowledge of finite groups and general topology, but is otherwise self-contained.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Part I. Representations of compact groups: 1. Compact groups and Haar measures 2. Representations, general constructions 3. A geometrical application 4. Finite-dimensional representations of compact groups 5. Decomposition of the regular representation 6. Convolution, Plancherel formula & Fourier inversion 7. Characters and group algebras 8. Induced representations and Frobenius-Weil reciprocity 9. Tannaka duality 10. Representations of the rotation group Part II. Representations of Locally Compact Groups: 11. Groups with few finite-dimensional representations 12. Invariant measures on locally compact groups and homogeneous spaces 13. Continuity properties of representations 14. Representations of G and of L1(G) 15. Schur's lemma: unbounded version 16. Discrete series of locally compact groups 17. The discrete series of S12(R) 18. The principal series of S12(R) 19. Decomposition along a commutative subgroup 20. Type I groups 21. Getting near an abstract Plancherel formula Epilogue.
Part I. Representations of compact groups: 1. Compact groups and Haar measures 2. Representations, general constructions 3. A geometrical application 4. Finite-dimensional representations of compact groups 5. Decomposition of the regular representation 6. Convolution, Plancherel formula & Fourier inversion 7. Characters and group algebras 8. Induced representations and Frobenius-Weil reciprocity 9. Tannaka duality 10. Representations of the rotation group Part II. Representations of Locally Compact Groups: 11. Groups with few finite-dimensional representations 12. Invariant measures on locally compact groups and homogeneous spaces 13. Continuity properties of representations 14. Representations of G and of L1(G) 15. Schur's lemma: unbounded version 16. Discrete series of locally compact groups 17. The discrete series of S12(R) 18. The principal series of S12(R) 19. Decomposition along a commutative subgroup 20. Type I groups 21. Getting near an abstract Plancherel formula Epilogue.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826