105,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 2-4 Wochen
  • Broschiertes Buch

Gain a clear understanding of even the most complex, highly theoretical computational theory topics in the approachable presentation found only in the market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this revision continues the book's well-know, approachable style with timely revisions, additional practice, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. You gain a solid…mehr

Produktbeschreibung
Gain a clear understanding of even the most complex, highly theoretical computational theory topics in the approachable presentation found only in the market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this revision continues the book's well-know, approachable style with timely revisions, additional practice, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. You gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this a valuable reference for your continued studies in theoretical computing.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Michael Sipser has taught theoretical computer science and mathematics at the Massachusetts Institute of Technology for the past 32 years. He is a Professor of Applied Mathematics, a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), and the current head of the mathematics department. He enjoys teaching and pondering the many mysteries of complexity theory.