This textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory.
Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers.
"The book draws many very interesting connections, say to topological groups, that are rarely found in more recent books. Hence I believe it is a valuable source for material for courses on the topic." (A. Cap, Monatshefte für Mathematik, Vol. 192 (4), August, 2020)
"This book is an educational text, in which practically all statements, which are contained in it, are proved. Therefore it is written for students, who want not only to study the theory of Lie groups and Lie algebras and to pass an examination, but to study the foundation of Lie theory for effectively using it in further scientific work." (V. V. Gorbatsevich, zbMATH 1367.22001, 2017)
"This book is an educational text, in which practically all statements, which are contained in it, are proved. Therefore it is written for students, who want not only to study the theory of Lie groups and Lie algebras and to pass an examination, but to study the foundation of Lie theory for effectively using it in further scientific work." (V. V. Gorbatsevich, zbMATH 1367.22001, 2017)