Experts in operations research and developers of softwareapplication systems have been treading separate paths formany years. It is urgently necessary to reset this course sothat the demanding requirements of variousCIM concepts canbe realized. This is specially relevant for computer-basedstock management. Both authors, with a number of years ofpractical experience behind them, have written this bookwith this objective in mind. The book shows how moderninventory control can be rationally structured with the helpof OR. Two aspects are given importance:1) the necessarymathematical derivations…mehr
Experts in operations research and developers of softwareapplication systems have been treading separate paths formany years. It is urgently necessary to reset this course sothat the demanding requirements of variousCIM concepts canbe realized. This is specially relevant for computer-basedstock management. Both authors, with a number of years ofpractical experience behind them, have written this bookwith this objective in mind. The book shows how moderninventory control can be rationally structured with the helpof OR. Two aspects are given importance:1) the necessarymathematical derivations are completely explained in detailso that the reader will be able to optimally handle a givensituation with the help of the methods learned in this book,and 2) aside from the models, strong emphasis is given onnumerical methods. Suitable algorithms are thoroughlyexplained for the more important cases.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Lecture Notes in Economics and Mathematical Systems 388
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Prof. Dr. Dieter Bartmann lehrt Bankinformatik an der Universität Regensburg. Er ist Gründer und Direktor des Instituts ibi Research GmbH an der Universität Regensburg.
Inhaltsangabe
1: Deterministic Inventory Models.- 1 Introduction.- 2 Economic Order Quantity (EOQ).- 3 Costs and Sensitivity.- 4 RM-Systems (ABC Analysis).- 5 Product-Mix Decision.- 6 Estimating the Rate of Demand.- 7 Profit Maximization.- 8 Inventory Evaluation.- 9 Quantity Discount.- 10 Collective or Single Order ?.- 11 Optimal Stocking in Serial Production.- 12 Stock-outs Allowed.- 13 Discrete Lot Sizes.- 14 Consideration of Shelf Space in Inventory.- 15 Budget Restriction.- 16 Known but Varying Demand.- 17 Fixed Delivery Period ?.- 18 Safety Stock with Stochastic Delivery Time (including Just-in-Time Production).- 2: The Wilson Model with Poisson Demand.- 19 Poisson Process.- 20 General Remarks on Chance.- 21 Interest, Continuous Interest, Present Value.- 22 Inventory with Poisson Demand and Immediate Delivery.- 23 Poisson Demand, No Discounting.- 24 Recurrent Process.- 25 Proof of Optimality.- 3: Stochastic Single Period Models.- 26 The Newsboy Problem.- 27 Evaluation of $$ {text{P}}left( {text{x}} right){text{ = }}frac{{text{g}}}{{{text{h + g}}}} $$.- 28 Temporal Structure of the Newsboy Problem.- 29 Exact Formulation.- 30 Overbooking.- 4: Stochastic Models with Continuous Review.- 31 Method of State Probabilities.- 32 Poisson Demand, Exponential Delivery Time.- 33 Poisson Demand, Fixed Delivery Time ?.- 34 Poisson Demand, Stochastic Delivery Time, Single Order.- 35 Poisson Demand, Stochastic Delivery Time, Multiple Orders.- 5: Stochastic Models with Periodic Review.- 36 The Arrow-Harris-Marschak Model.- 37 The AHM-Model in the Stationary Case.- 38 Standardization.- 39 Exponentially Distributed Demand.- 40 Optimality of the (s,S)-Policy.- 41 Elimination of Proportional OrderingCosts with Finite Planning Horizon.- 42 Bounds for (sn,Sn).- 43 Optimality of the (s,S)-Policy in the Stationary Model.- 44 A Method for Computing s and S.- 45 AHM-Model with Delivery Time.- 46 Autocorrelated Demand.- 47 Inventory with Forecasting.- 6: Numerical Methods.- 48 Value Iteration.- 49 Policy Iteration.- 50 Bisection Method and Dynamic Programming.- 51 Computation of Optimal (s,S)-Policies according to Federgruen and Zipkin.- Closing Remarks.- Literature.
1: Deterministic Inventory Models.- 1 Introduction.- 2 Economic Order Quantity (EOQ).- 3 Costs and Sensitivity.- 4 RM-Systems (ABC Analysis).- 5 Product-Mix Decision.- 6 Estimating the Rate of Demand.- 7 Profit Maximization.- 8 Inventory Evaluation.- 9 Quantity Discount.- 10 Collective or Single Order ?.- 11 Optimal Stocking in Serial Production.- 12 Stock-outs Allowed.- 13 Discrete Lot Sizes.- 14 Consideration of Shelf Space in Inventory.- 15 Budget Restriction.- 16 Known but Varying Demand.- 17 Fixed Delivery Period ?.- 18 Safety Stock with Stochastic Delivery Time (including Just-in-Time Production).- 2: The Wilson Model with Poisson Demand.- 19 Poisson Process.- 20 General Remarks on Chance.- 21 Interest, Continuous Interest, Present Value.- 22 Inventory with Poisson Demand and Immediate Delivery.- 23 Poisson Demand, No Discounting.- 24 Recurrent Process.- 25 Proof of Optimality.- 3: Stochastic Single Period Models.- 26 The Newsboy Problem.- 27 Evaluation of $$ {text{P}}left( {text{x}} right){text{ = }}frac{{text{g}}}{{{text{h + g}}}} $$.- 28 Temporal Structure of the Newsboy Problem.- 29 Exact Formulation.- 30 Overbooking.- 4: Stochastic Models with Continuous Review.- 31 Method of State Probabilities.- 32 Poisson Demand, Exponential Delivery Time.- 33 Poisson Demand, Fixed Delivery Time ?.- 34 Poisson Demand, Stochastic Delivery Time, Single Order.- 35 Poisson Demand, Stochastic Delivery Time, Multiple Orders.- 5: Stochastic Models with Periodic Review.- 36 The Arrow-Harris-Marschak Model.- 37 The AHM-Model in the Stationary Case.- 38 Standardization.- 39 Exponentially Distributed Demand.- 40 Optimality of the (s,S)-Policy.- 41 Elimination of Proportional OrderingCosts with Finite Planning Horizon.- 42 Bounds for (sn,Sn).- 43 Optimality of the (s,S)-Policy in the Stationary Model.- 44 A Method for Computing s and S.- 45 AHM-Model with Delivery Time.- 46 Autocorrelated Demand.- 47 Inventory with Forecasting.- 6: Numerical Methods.- 48 Value Iteration.- 49 Policy Iteration.- 50 Bisection Method and Dynamic Programming.- 51 Computation of Optimal (s,S)-Policies according to Federgruen and Zipkin.- Closing Remarks.- Literature.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826