51,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
26 °P sammeln
  • Broschiertes Buch

This work covers several aspects related to Laser WakeField Acceleration (LWFA). A strong and ultrashort laser pulse can generate plasma waves with accelerating gradients up to 100s GV/m, four orders of magnitude higher than a conventional radio frequency linear accelerator. The LWFA electrons have been characterized as an ultra-short and high brilliance source. These remarkable properties lead to a compact accelerator which is of great scientific interest for building a table-top coherent free electron laser as well as a single-shot electron diffraction device. On the other hand, a new…mehr

Produktbeschreibung
This work covers several aspects related to Laser WakeField Acceleration (LWFA). A strong and ultrashort laser pulse can generate plasma waves with accelerating gradients up to 100s GV/m, four orders of magnitude higher than a conventional radio frequency linear accelerator. The LWFA electrons have been characterized as an ultra-short and high brilliance source. These remarkable properties lead to a compact accelerator which is of great scientific interest for building a table-top coherent free electron laser as well as a single-shot electron diffraction device. On the other hand, a new application of LWFA is to utilize the high peak current LWFA electron bunch to drive a wakefield efficiently inside a high density underdense plasma. The resulting wakefield quickly decelerates the driver bunch or accelerates a properly designed witness bunch, and therefore the plasma is utilized as a compact beam dump or an afterburner staged after a regular LWFA.
Autorenporträt
Researcher in laser and plasma physics, both experimentally and theoretically, using high power and ultrashort laser pluses to create plasma where the unique phenomena and applications are studied.