The present review focuses on a comparison and assessment of zeolite catalyst performance of dimethyl ether and light olefin production through methanol. Dimethyl ether is a clean fuel which needs diverse processes to be produced. Methanol to dimethyl ether is a very novel process which offers considerable advantages versus additional processes for the production of dimethyl ether. The corresponding fixed-bed reactors compose the most important section of such a process. Production of dimethyl ether by the mentioned process is of high importance since it can be catalytically transferred to a substance with the value of propylene. Furthermore, in case of capability to transfer low-purity methanol into dimethyl ether, less expensive methanol can be consequently achieved with higher value added. In the petrochemical industry, light olefins, for example, ethylene and propylene, can be used as raw materials for the production of polyolefin. The present review aims to produce dimethyl ether in order to reach olefin substances, initially conducting a compressive assessment on production methods of olefin substances.