Photometry and astrometry performed with charge coupled devices (CCDs) at the focal planes of large telescopes are indispensable tools of modern observational cosmology, astrophysics and astronomy. In the modern era of precision cosmology, variations in the sub-pixel sensitivity and spectral response of CCDs can affect the science yield of observations and must be characterized. Unfortunately, there have been very few studies to measure the sub-pixel response variations of CCDs, particularly in the context of observational cosmology. It is the aim of this study is to perform the first measurement of the photometric and astrometric fidelity of high-resistivity, p-channel CCDs. These devices have been selected for major upcoming observational cosmology missions such as the space-based Supernova Acceleration Probe satellite (SNAP) and the ground-based Dark Energy Survey. An experimental study has been performed to make detailed measurements of the intrapixel response variations of these devices at a precision exceeding 2%, which is the level of precision required for the missions.