Material processing techniques that employ severe plastic deformation have evolved over the past decade, producing metals, alloys and composites having extraordinary properties. Variants of SPD methods are now capable of creating monolithic materials with submicron and nanocrystalline grain sizes. The resulting novel properties of these materials has led to a growing scientific and commercial interest in them. They offer the promise of bulk nanocrystalline materials for structural; applications, including nanocomposites of lightweight alloys with unprecedented strength. These materials may…mehr
Material processing techniques that employ severe plastic deformation have evolved over the past decade, producing metals, alloys and composites having extraordinary properties. Variants of SPD methods are now capable of creating monolithic materials with submicron and nanocrystalline grain sizes. The resulting novel properties of these materials has led to a growing scientific and commercial interest in them. They offer the promise of bulk nanocrystalline materials for structural; applications, including nanocomposites of lightweight alloys with unprecedented strength. These materials may also enable the use of alternative metal shaping processes, such as high strain rate superplastic forming. Prospective applications for medical, automotive, aerospace and other industries are already under development.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Preface. Introduction. I: Innovations in Severe Plastic Deformation Processing and Process Modeling. Severe Plastic Deformation of Materials by Equal Channel Angular Extrusion (ECAE); R.E. Goforth, et al. Severe Plastic Deformation of Steels: Structure, Properties and Techniques; S.V. Dobatkin. Application of ECAP - Technology for Producing Nano- and Microcrystalline Materials; V.I. Kopylov. Severe Deformation Based Process for Grain Subdivision and Resulting Microstructures; A.K. Ghosh, W. Huang. Modeling of Continual Flows in Angular Domains; B.V. Koutcheryaev. Synthesis and Characterization of Nanocrystalline Tial Based Alloys; O.N. Senkov, F.H. Froes. Formation of Submicrocrystalline Structure in TiAl and Ti3Al Intermetallics via Hot Working; G. Salishchev, et al. Severe Plastic Deformation Processes; Modeling and Workability; S.L. Semiatin, et al. The Effect of Strain Path on the Rate of Formation of High Angle Grain Boundaries During ECAE; P.B. Prangnell, et al. Thermomechanical Conditions for Submicrocrystalline Structure Formation by Severe Plastic Deformation; F.Z. Utyashev, et al. II: Microstructural Characterization and Modeling of Severe Plastic Deformation Materials. Strengthening Processes of Metals by Severe Plastic Deformation. Analyses with Electron and Synchrotron Radiation; M.J. Zehetbauer. Size Distribution of Grains or Subgrains, Dislocation Density and Dislocation Character by Using the Dislocation Model of Strain Anisotropy in X-Ray Line Profile Analysis; T. Ungßr. X Ray-Studies and Computer Simulation of Nanostructured SPD Metals; I.V. Alexandrov. An Analysis of Heterophase Structures of Ti3Al, TiAl, Ni3Al Intermetallics Synthesized by the Method of the Spherical Sho
Preface. Introduction. I: Innovations in Severe Plastic Deformation Processing and Process Modeling. Severe Plastic Deformation of Materials by Equal Channel Angular Extrusion (ECAE); R.E. Goforth, et al. Severe Plastic Deformation of Steels: Structure, Properties and Techniques; S.V. Dobatkin. Application of ECAP - Technology for Producing Nano- and Microcrystalline Materials; V.I. Kopylov. Severe Deformation Based Process for Grain Subdivision and Resulting Microstructures; A.K. Ghosh, W. Huang. Modeling of Continual Flows in Angular Domains; B.V. Koutcheryaev. Synthesis and Characterization of Nanocrystalline Tial Based Alloys; O.N. Senkov, F.H. Froes. Formation of Submicrocrystalline Structure in TiAl and Ti3Al Intermetallics via Hot Working; G. Salishchev, et al. Severe Plastic Deformation Processes; Modeling and Workability; S.L. Semiatin, et al. The Effect of Strain Path on the Rate of Formation of High Angle Grain Boundaries During ECAE; P.B. Prangnell, et al. Thermomechanical Conditions for Submicrocrystalline Structure Formation by Severe Plastic Deformation; F.Z. Utyashev, et al. II: Microstructural Characterization and Modeling of Severe Plastic Deformation Materials. Strengthening Processes of Metals by Severe Plastic Deformation. Analyses with Electron and Synchrotron Radiation; M.J. Zehetbauer. Size Distribution of Grains or Subgrains, Dislocation Density and Dislocation Character by Using the Dislocation Model of Strain Anisotropy in X-Ray Line Profile Analysis; T. Ungßr. X Ray-Studies and Computer Simulation of Nanostructured SPD Metals; I.V. Alexandrov. An Analysis of Heterophase Structures of Ti3Al, TiAl, Ni3Al Intermetallics Synthesized by the Method of the Spherical Sho
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497