• Produktbild: Ion Tracks and Microtechnology
  • Produktbild: Ion Tracks and Microtechnology

Ion Tracks and Microtechnology Principles and Applications

58,99 €

inkl. MwSt, Versandkostenfrei

Lieferung nach Hause

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

16.01.2012

Verlag

Vieweg & Teubner

Seitenzahl

274

Maße (L/B/H)

24,4/17/1,6 cm

Gewicht

502 g

Auflage

Softcover reprint of the original 1st ed. 1990

Sprache

Deutsch, Englisch

ISBN

978-3-322-83104-0

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

16.01.2012

Verlag

Vieweg & Teubner

Seitenzahl

274

Maße (L/B/H)

24,4/17/1,6 cm

Gewicht

502 g

Auflage

Softcover reprint of the original 1st ed. 1990

Sprache

Deutsch, Englisch

ISBN

978-3-322-83104-0

Herstelleradresse

Vieweg+Teubner Verlag
Abraham-Lincoln-Straße 46
65189 Wiesbaden
DE

Email: ProductSafety@springernature.com

Unsere Kundinnen und Kunden meinen

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Konto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Unsere Kundinnen und Kunden meinen

0 Bewertungen filtern

Weitere Artikel findest du in

  • Produktbild: Ion Tracks and Microtechnology
  • Produktbild: Ion Tracks and Microtechnology
  • I Principles of track creation.- 1 Irradiation technology.- 1.1 Radioactive sources.- 1.1.1 Nuclear reactors.- 1.1.2 Alpha and fission sources.- 1.2 Ion accelerators.- 1.2.1 Characteristic parameters of accelerators.- 1.2.2 Production of highly charged heavy ions.- 1.2.3 Ion deflection and focussing.- 1.2.4 Acceleration techniques.- 1.2.5 Behavior of ions at relativistic energies.- 1.3 Irradiation targets and equipment.- 1.3.1 Wide-beam irradiation devices.- 1.3.2 Scanning ion microbeams.- 1.4 Radiation safety.- 1.4.1 Handling of radioactive sources.- 1.4.2 Basics of sample activation by accelerated ions.- 2 Energy-loss phenomena.- 2.1 Energy-transfer to target electrons.- 2.1.1 Binary-encounter model.- 2.1.2 Impact parameter and scattering angle.- 2.1.3 Transferred kinetic energy.- 2.1.4 Energy-loss per unit length-of-path.- 2.1.5 Cut-off energy.- 2.1.6 Bohr’s energy-loss relation.- 2.1.7 Charge-state of projectile-ion.- 2.1.8 Charge-corrected energy-loss relation.- 2.2 Secondary energy-loss effects.- 2.2.1 Energy-loss in multi-elemental targets.- 2.2.2 Energy-straggling and angular straggling.- 2.2.3 Energy-transfer to target nuclei.- 2.2.4 Calculation of ion range.- 3 Formation of the latent track.- 3.1 Track core — atomic defects.- 3.1.1 Coulomb explosion model.- 3.1.2 Atomic collision-cascade.- 3.1.3 Thermal-spike model.- 3.1.4 Resulting primary defects.- 3.1.5 Diffusion and relaxation of defects.- 3.2 Track halo — electronic defects.- 3.2.1 Electron emission from ion trajectory.- 3.2.2 Secondary-electron collision-cascade.- 3.2.3 Translation of deposited energy into effect.- 4 Development of ion tracks.- 4.1 Nucleation of a new phase.- 4.1.1 Origin of phases.- 4.1.2 Basic theory of interface energy.- 4.1.3 Condition for grain growth.- 4.1.4 Formation of condensation nuclei.- 4.2 Track response function.- 4.2.1 Track etch threshold.- 4.2.2 Track sensitization and annealing.- 4.3 Shape of etched tracks.- 4.3.1 Primary factors in track etching.- 4.3.2 Fick’s first diffusion law.- 4.3.3 Calculation of track shapes.- 4.3.4 Tracks in crystals.- 5 Observation of ion tracks.- 5.1 Microscopic observations.- 5.1.1 Optical microscope.- 5.1.2 Scanning electron microscope.- 5.1.3 Transmission electron microscope.- 5.2 Diffraction techniques.- 5.2.1 Basic principles.- 5.2.2 Small-angle scattering.- 5.2.3 X ray topography.- 5.3 Auxiliary techniques.- 5.3.1 Electron spin resonance.- 5.3.2 Electrical observations.- 5.3.3 Gas-permeation.- 5.3.4 Mechanical observations.- 6 Resulting structures.- 6.1 Fundamental shapes of etched tracks.- 6.1.1 Single-ion tracks.- 6.1.2 Non-overlapping tracks.- 6.1.3 Overlapping tracks.- 6.1.4 Further possibilities.- 6.2 Stochastic track patterns.- 6.2.1 Two-dimensional track overlap.- 6.2.2 Three-dimensional track overlap.- II Track applications.- 7 Single-ion tracks.- 7.1 Number, size, and deformability of particles.- 7.1.1 Basic relations.- 7.1.2 Resistive pulse technique.- 7.1.3 Deformability and interface energy.- 7.1.4 Red blood cell deformability.- 7.1.5 Suggested pore shapes.- 7.2 Single-pores and super fluidity.- 7.2.1 Basic phenomena.- 7.2.2 Basic relations.- 7.2.3 Flow through a single pore.- 7.2.4 Suggested shapes of weak links.- 8 Multiple ion tracks.- 8.1 Enhanced diffusion.- 8.1.1 Diffusion equations.- 8.1.2 Electric analogue of diffusion equations.- 8.1.3 Solution of dynamic diffusion equation.- 8.1.4 Connected-cavity model.- 8.1.5 Gas permeation through latent tracks.- 8.2 Membrane technology.- 8.2.1 Ion track filters.- 8.2.2 Prospects of track membranes.- 9 Bulk properties.- 9.1 Adjusting magnetic properties.- 9.1.1 Magnetic properties of matter.- 9.1.2 Matrix model of magneto-optic films.- 9.1.3 Experimental results.- 9.1.5 Generation of anisotropy.- 10 Growth areas.- 10.1 Ion lithography.- 10.1.1 Basic techniques in lithography.- 10.1.2 Ion lithographic techniques.- 10.2 Surface texture.- 10.2.1 Light scattering devices.- 10.2.2 Antireflection treatment.- 10.2.3 Further possibilities.- Concluding remarks.- Definitions and units.- List of symbols.