Iridium(iii) in Optoelectronic and Photonics Applications, 2 Volume Set
Herausgeber: Zysman-Colman, Eli
Iridium(iii) in Optoelectronic and Photonics Applications, 2 Volume Set
Herausgeber: Zysman-Colman, Eli
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications. Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications. This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only mononuclear complexes but also the properties of multinuclear and polymeric iridium-based…mehr
Andere Kunden interessierten sich auch für
- Robert A ScottEncyclopedia of Inorganic Chemistry, 5 Volume Set1.098,99 €
- M.V. Twigg (ed.)Mechanisms of Inorganic and Organometallic Reactions111,99 €
- Natalia V PlechkovaIonic Liquids Uncoiled, Set420,99 €
- Dibyendu GanguliInorganic Particle Synthesis Via Macro and Microemulsions126,99 €
- Volume 1: Mechanisms of Inorganic and Organometallic Reactions42,99 €
- Joseph DavidovitsGeopolymer Chemistry and Applications, 5th Ed175,99 €
- Todd B. Marder / Zhenyang Lin (eds.)Contemporary Metal Boron Chemistry I147,99 €
-
-
-
The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications. Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications. This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only mononuclear complexes but also the properties of multinuclear and polymeric iridium-based materials and the assembly of iridium complexes into larger supramolecular architectures such as MOFs and soft materials. Chapters devoted to the use of these iridium-based materials in diverse optoelectronic applications follow, including electroluminescent devices such as organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LEECs), electrochemiluminescence (ECL), bioimaging, sensing, light harvesting in the context of solar cell applications, in photoredox catalysis and as components for solar fuels. Although primarily targeting a chemistry audience, the wide applicability of these compounds transcends traditional disciplines, making this text also of use to physicists, materials scientists or biologists who have interests in these areas.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 736
- Erscheinungstermin: 8. Mai 2017
- Englisch
- Abmessung: 259mm x 183mm x 56mm
- Gewicht: 1792g
- ISBN-13: 9781119007135
- ISBN-10: 1119007135
- Artikelnr.: 48249952
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 736
- Erscheinungstermin: 8. Mai 2017
- Englisch
- Abmessung: 259mm x 183mm x 56mm
- Gewicht: 1792g
- ISBN-13: 9781119007135
- ISBN-10: 1119007135
- Artikelnr.: 48249952
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Edited by Eli Zysman-Colman EaStCHEM School of Chemistry, University of St Andrews, UK
List of Contributors xv Foreword xvii Preface xix VOLUME 1 1 Archetypal Iridium(III) Compounds for Optoelectronic and Photonic Applications: Photophysical Properties and Synthetic Methods 1 Joseph C. Deaton and Felix N. Castellano 1.1 Introduction 1 1.2 Iridium Complex Ion Dopants in Silver Halide Photographic Materials 1 1.3 Overview of the Photophysical Properties of C^N and C^C: Cyclometalated Ir(III) Complexes 2 1.4 Importance of Ir
C Bonds in the Archetypal Ir(III) Complexes for Optoelectronic and Photonic Applications 9 1.5 Tuning Emission Color 14 1.6 Absorbance and Photoluminescence of C^N Cyclometalated Ir(III) Complexes 17 1.7 SOC Mechanism: Radiative Decay Rates and ZFS 23 1.8 Non-Radiative Decay Rates 39 1.9 Synthetic Methods Targeting C^N Cyclometalated Ir(III) Compounds 42 1.10 Synthetic Methods for Cyclometalated Ir(III) Compounds Containing Carbenes 47 1.11 Conclusions 48 Acknowledgements 49 Abbreviations for Ligands in Ir(III) Complexes 49 References 50 2 Multinuclear Iridium Complexes 71 J. A. Gareth Williams 2.1 Introduction 71 2.2 Compounds Incorporating 'Single Atom Bridges':
-Chloro,
-Oxo and
-Aza 72 2.2.1
-Chloro-Bridged Complexes 72 2.2.2
-Aza-Bridged Complexes 74 2.2.3
-Hydroxo-Bridged Complexes 76 2.3 Polyatomic Acyclic Bridges: Acetylides, Cyanides and Hydrazides 78 2.4 Compounds with Heterocyclic Bridges 82 2.4.1 Bis-(N^N)-Coordinating Ligands and Related Systems Incorporating At Least One N^N Unit 83 2.4.2 Bis-(N^C)-Coordinating Ligands 89 2.5 Multinuclear Complexes Featuring Conjugated Bridges between Iridium-Bound Polypyridyl or Arylpyridyl Ligands 93 2.5.1 Systems Incorporating C
C or N=N Bridges with One or More [Ir(N^C)2(N^N)]+ Units 95 2.5.2 Multinuclear Complexes Incorporating Phenyl and Polyphenylene Bridges between the Ligands: 'Supramolecular Assemblies' 96 2.6 Concluding Remarks 104 Acknowledgements 104 References 104 3 Soft Materials and Soft Salts Based on Iridium Complexes 111 Etienne Baranoff and Yafei Wang 3.1 Introduction 111 3.2 Liquid Crystals 112 3.3 Gels 115 3.4 Micelles 116 3.5 Langmuir-Blodgett Films 118 3.6 Soft Salts 118 3.7 Conclusion 123 Acknowledgements 123 References 123 4 Porous Materials Based on Precious Metal Building Blocks for Solar Energy Applications 127 Daniel Micheroni and Wenbin Lin 4.1 Introduction 127 4.2 The Luminescent Nature of MOFs and Their Use in Chemical Applications 129 4.3 Energy Transfer in Porous Materials 134 4.4 Porous Materials for Water Oxidation 136 4.5 Porous Materials for Proton Reduction 138 4.6 Porous Materials for CO2 Reduction 140 4.7 Conclusions and Outlook 141 References 141 5 Polymeric Architectures Containing Phosphorescent Iridium(III) Complexes 145 Andreas Winter and Ulrich S. Schubert 5.1 Introduction 145 5.2 Ir(III)-Containing Polymers: Classification, Design Principles, and Syntheses 146 5.2.1 Classification of Ir(III)-Containing Polymers 146 5.2.2 Design Principles for Metal-Containing Polymers 147 5.2.2.1 Decoration of Preformed Polymers with Ir(III) Complexes 149 5.2.2.2 Coordination of Ir(III) Precursor Complexes to Preformed Polymers 151 5.2.2.3 (Co)Polymerization of Ir(III)-Containing Monomers 157 5.2.2.4 Electropolymerization of Ir(III)-Containing Complexes 182 5.2.2.5 Synthetic Approaches Toward Ir(III)-Containing Polymers: The Roads Not Taken 186 5.3 Hyperbranched and Dendritic Architectures 187 5.3.1 Ir(III)-Containing Hyperbranched Polymers 187 5.3.2 Ir(III)-Containing Dendritic Systems 188 5.4 Concluding Remarks 191 References 192 6 Iridium(III) Complexes for OLED Application 205 Elena Longhi and Luisa De Cola 6.1 Introduction 205 6.2 Iridium Complexes 206 6.2.1 General Synthesis of Ir(III) Complexes 207 6.2.2 Luminescence of Iridium(III) Complexes 208 6.2.3 Emission Color Tuning in Iridium(III) Complexes 209 6.2.3.1 Influence of the (C^N) Ligand 210 6.2.3.2 Influence of the Ancillary Ligand 212 6.3 Organic Light-Emitting Diodes 216 6.3.1 Device Architecture and Fabrication 217 6.3.2 Device Lifetime 218 6.3.3 Device Efficiency 220 6.3.4 Phosphorescent Materials 221 6.3.5 Host Materials 222 6.4 Iridium(III) Complexes for PHOLED Application 227 6.4.1 Green Emitters 227 6.4.1.1 Role of the Ancillary Ligand 228 6.4.1.2 Modification of the Phenylpyridine Ring 229 6.4.1.3 Use of Different Tris-cyclometalated Motifs 230 6.4.2 Red Emitters 232 6.4.3 Blue Emitters 238 6.5 Conclusions and Perspectives 262 References 262 7 A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs) 275 Adam F. Henwood and Eli Zysman-Colman 7.1 Introduction 275 7.2 Device Fundamentals 278 7.3 Green Emitters 280 7.3.1 Archetypal Emitters 282 7.3.2 Pyrazoles 289 7.3.3 Imidazoles 292 7.3.4 Triazoles and Tetrazoles 293 7.3.5 Oxadiazoles 294 7.3.6 Thiophenes 296 7.3.7 Intramolecular
-Stacked Emitters 296 7.3.8 Supramolecular Emitters 300 7.4 Blue Emitters 301 7.4.1 [Ir(ppy)2(bpy)]+-Type Emitters 302 7.4.2 Pyrazoles 307 7.4.3 Imidazoles 312 7.4.4 Triazoles 313 7.4.5 Oxadiazoles 316 7.4.6 N-Heterocyclic Carbenes 320 7.4.7 Phosphines 322 7.5 Yellow Emitters 323 7.5.1 [Ir(ppy)2(bpy)]+-Type Emitters 324 7.5.2 Imidazole Emitters 327 7.5.3 Anionic Emitters 328 7.5.4 Intramolecularly
-Stacked Emitters 328 7.5.5 Multifunctional or Supramolecular Emitters 332 7.6 Orange-Red Emitters 334 7.6.1 [Ir(ppy)2(bpy)]+-Type Emitters 335 7.6.2 Emitters Bearing Five-Membered Heterocyclic Rings 340 7.6.3 Intramolecular
-Stacked Emitters 341 7.6.4 Multifunctional Emitters 345 7.7 Conclusions and Outlook 348 Acknowledgements 349 References 349 VOLUME 2 8 Electrochemiluminescence of Iridium Complexes 359 Sarah E. Laird and Conor F. Hogan 8.1 Background and Overview of Electrochemiluminescence 359 8.1.1 ECL from Metal Complexes 362 8.2 Iridium ECL 363 8.2.1 First Examples 363 8.2.2 Renewed Interest in Iridium ECL Stimulated by Progress in the Field of Light-Emitting Devices 364 8.2.3 Early Advances in Theoretical Understanding and Electrochemiluminophore Design 366 8.2.4 Modified Electrode Systems 370 8.2.5 ECL-Based Sensing Strategies 372 8.2.6 Issues Related to ECL of Iridium Complexes in Aqueous Media and Quenching by Oxygen 384 8.2.7 Tuning ECL Emission Colour and Redox Properties 386 8.2.8 Potential-Resolved Multicolour ECL 399 8.2.8.1 Miscellaneous ECL Systems Involving Iridium Complexes 405 8.2.9 Conclusion and Future Prospects 406 List of Ligand Abbreviations Used in Text 406 References 407 9 Strategic Applications of Luminescent Iridium(III) Complexes as Biomolecular Probes, Cellular Imaging Reagents, and Photodynamic Therapeutics 415 Karson Ka-Shun Tso and Kenneth Kam-Wing Lo 9.1 Introduction 415 9.2 General Cellular Staining Reagents 416 9.3 Hypoxia Sensing Probes 423 9.4 Molecular and Ion Intracellular Probes 427 9.4.1 Intracellular Probes for Sulfur-Containing Species 427 9.4.2 Intracellular Probes for Metal Ions 433 9.4.3 Intracellular Probes for Hypochlorous Acid and Hypochlorite 437 9.4.4 Intracellular Probes for Nitric Oxide 439 9.5 Organelle-Targeting Bioimaging Reagents 441 9.5.1 Nucleus 441 9.5.2 Nucleoli 443 9.5.3 Golgi Apparatus 445 9.5.4 Mitochondria 447 9.6 Functionalized Polypeptides for Bioimaging 450 9.7 Polymers and Nanoparticles for Bioimaging 454 9.8 Photocytotoxic Reagents and Photodynamic Therapeutics 458 9.9 Conclusion 466 Acknowledgements 466 Abbreviations 466 References 469 10 Iridium Complexes in the Development of Optical Sensors 479 Teresa Ramón-Márquez, Marta Marín-Suárez, Alberto Fernández-Gutiérrez and J. F. Fernández-Sánchez 10.1 Generalities of Optical Sensors 479 10.2 Ir(III) Used as Optical Probes 481 10.2.1 Optical Probes for the Detection of Gaseous Species 481 10.2.1.1 Oxygen 482 10.2.1.2 Other Gaseous Species 483 10.2.2 Optical Probes for the Detection of Ionic Species 485 10.2.2.1 Cations 485 10.2.2.2 pH 491 10.2.2.3 Anions 493 10.2.3 Optical Probes for the Detection of Biomolecules 498 10.2.3.1 Amino Acids and Proteins 498 10.2.3.2 Nucleotides and Nucleic Acids 506 10.2.4 Optical Probes for the Detection of Other Small Molecules 506 10.2.4.1 Explosives 506 10.2.4.2 Free Radicals 507 10.2.4.3 H2O2 508 10.2.4.4 Amines 508 10.2.4.5 Silver Salts 508 10.2.4.6 Hypochlorous Acid (HOCl) 508 10.3 Ir(III) Used in the Development of Sensing Phases 509 10.3.1 Sensing Phases for the Detection of Gases 509 10.3.1.1 Oxygen 509 10.3.1.2 Others Gases 516 10.3.2 Sensing Phases for the Detection of Ions 516 10.3.3 Sensing Phases for the Detection of Biomolecules 517 10.3.3.1 Glucose 518 10.3.3.2 BSA 520 10.3.3.3 Cysteine and Homocysteine 520 10.3.3.4 Heparin 520 10.3.3.5 Histone 521 10.3.4 Sensing Phases for Multiparametric Sensing 521 10.4 Conclusion and Future Challenges 522 Acronyms Used in the Names of the Complexes 525 References 528 11 Photoredox Catalysis of Iridium(III)-Based Photosensitizers 541 Timothy M. Monos and Corey R. J. Stephenson 11.1 Introduction 541 11.1.1 Photoredox Catalysis 541 11.1.2 Principles of Photoredox Catalysis 542 11.1.3 Iridium(III) Photocatalyst Design 542 11.1.4 Ir(III) Photocatalyst synthesis 545 11.2 Iridium-Based Photoredox Catalysis in Organic Synthesis 547 11.2.1 Net Oxidative Reactions 547 11.2.1.1 Amine Oxidation and Functionalization 547 11.2.1.2 Arene Oxidation 551 11.2.2 Net Reductive Reactions 551 11.2.2.1 Dehalogenation Reactions 551 11.2.2.2 Ketyl Radical Chemistry 553 11.2.3 Redox-Neutral Reactions 554 11.2.3.1 Atom Transfer Radical Addition 555 11.2.3.2 Radical-Based Arene Addition Reactions 561 11.2.3.3 Tandem Catalysis Methods 565 11.2.4 Amine Fragmentation 571 11.3 Conclusion 574 References 574 12 Solar Fuel Generation: Structural and Functional Evolution of Iridium Photosensitizers 583 Husain N. Kagalwala, Danielle N. Chirdon and Stefan Bernhard 12.1 Introduction 583 12.2 Fundamentals of [Ir(C^N)2(N^N)]+ Photosensitizers 585 12.2.1 Synthesis and Structure 585 12.2.2 Electronics: Photophysics and Electrochemistry 585 12.2.3 Complexes Made to Order 588 12.3 Application of [Ir(C^N)2(N^N)]+ in Photocatalytic Water Reduction 589 12.3.1 Initial Exploration 589 12.3.2 Systems with Non-precious Components 591 12.3.3 Strategies for Improved Efficiency 594 12.3.3.1 New C^N Ligands 594 12.3.3.2 New N^N Ligands 597 12.3.3.3 Orchestration 599 12.4 Alternative Iridium Structures 603 12.4.1 Tridentate Coordination 603 12.4.2 Tris-Cyclometalated Complexes 605 12.4.3 Dinuclear Iridium Complexes 606 12.5 Outlook 607 Acknowledgements 609 References 610 13 Iridium Complexes in Water Oxidation Catalysis 617 Ilaria Corbucci, Alceo Macchioni and Martin Albrecht 13.1 Introduction 617 13.2 Sacrificial Oxidants 619 13.2.1 Cerium(IV) Ammonium Nitrate 620 13.2.2 Sodium Periodate 620 13.3 Molecular Iridium Catalyst for Water Oxidation 621 13.3.1 Ir WOCs without Cp
621 13.3.2 Ir WOCs with Cp
624 13.3.3 Cp
Ir WOCs Based on Carbene-Type Ligands 632 13.3.3.1 Cp
Ir WOCs Bearing Normal Carbene-Type Ligands 633 13.3.3.2 Cp
Ir WOCs Bearing Abnormal Carbene-Type Ligands 636 13.3.3.3 Comparison of Catalytic Activity of Cp
Ir Bearing Mesoionic Imidazolylidene Ligand or the Mesoionic Triazolylidene Analogue 638 13.3.4 Heterogenized Molecular Iridium Catalyst for Water Oxidation 640 13.3.5 Iridium WOC as Photocatalyst for Water Oxidation under Visible Light Irradiation 645 13.4 Conclusions 647 Acknowledgements 648 Glossary of Terms and Abbreviations 648 References 649 14 Iridium Complexes as Photoactive Center for Light Harvesting and Solar Cell Applications 655 Etienne Baranoff and Prashant Kumar 14.1 Introduction 655 14.2 Photoinduced Electron Transfer in Multicomponent Arrays 656 14.2.1 Ir(tpy)2 Fragment (tpy = 2,2 :6 -2 -terpyridine) 656 14.2.2 Cyclometalated Iridium(III) 660 14.3 Iridium Complexes as Photoactive Center for Solar Cell Applications 665 14.3.1 Sensitizer for Dye-Sensitized Solar Cells 665 14.3.2 Iridium Complexes for Organic Photovoltaic Devices 673 14.4 Conclusions 676 References 677 Index 683
C Bonds in the Archetypal Ir(III) Complexes for Optoelectronic and Photonic Applications 9 1.5 Tuning Emission Color 14 1.6 Absorbance and Photoluminescence of C^N Cyclometalated Ir(III) Complexes 17 1.7 SOC Mechanism: Radiative Decay Rates and ZFS 23 1.8 Non-Radiative Decay Rates 39 1.9 Synthetic Methods Targeting C^N Cyclometalated Ir(III) Compounds 42 1.10 Synthetic Methods for Cyclometalated Ir(III) Compounds Containing Carbenes 47 1.11 Conclusions 48 Acknowledgements 49 Abbreviations for Ligands in Ir(III) Complexes 49 References 50 2 Multinuclear Iridium Complexes 71 J. A. Gareth Williams 2.1 Introduction 71 2.2 Compounds Incorporating 'Single Atom Bridges':
-Chloro,
-Oxo and
-Aza 72 2.2.1
-Chloro-Bridged Complexes 72 2.2.2
-Aza-Bridged Complexes 74 2.2.3
-Hydroxo-Bridged Complexes 76 2.3 Polyatomic Acyclic Bridges: Acetylides, Cyanides and Hydrazides 78 2.4 Compounds with Heterocyclic Bridges 82 2.4.1 Bis-(N^N)-Coordinating Ligands and Related Systems Incorporating At Least One N^N Unit 83 2.4.2 Bis-(N^C)-Coordinating Ligands 89 2.5 Multinuclear Complexes Featuring Conjugated Bridges between Iridium-Bound Polypyridyl or Arylpyridyl Ligands 93 2.5.1 Systems Incorporating C
C or N=N Bridges with One or More [Ir(N^C)2(N^N)]+ Units 95 2.5.2 Multinuclear Complexes Incorporating Phenyl and Polyphenylene Bridges between the Ligands: 'Supramolecular Assemblies' 96 2.6 Concluding Remarks 104 Acknowledgements 104 References 104 3 Soft Materials and Soft Salts Based on Iridium Complexes 111 Etienne Baranoff and Yafei Wang 3.1 Introduction 111 3.2 Liquid Crystals 112 3.3 Gels 115 3.4 Micelles 116 3.5 Langmuir-Blodgett Films 118 3.6 Soft Salts 118 3.7 Conclusion 123 Acknowledgements 123 References 123 4 Porous Materials Based on Precious Metal Building Blocks for Solar Energy Applications 127 Daniel Micheroni and Wenbin Lin 4.1 Introduction 127 4.2 The Luminescent Nature of MOFs and Their Use in Chemical Applications 129 4.3 Energy Transfer in Porous Materials 134 4.4 Porous Materials for Water Oxidation 136 4.5 Porous Materials for Proton Reduction 138 4.6 Porous Materials for CO2 Reduction 140 4.7 Conclusions and Outlook 141 References 141 5 Polymeric Architectures Containing Phosphorescent Iridium(III) Complexes 145 Andreas Winter and Ulrich S. Schubert 5.1 Introduction 145 5.2 Ir(III)-Containing Polymers: Classification, Design Principles, and Syntheses 146 5.2.1 Classification of Ir(III)-Containing Polymers 146 5.2.2 Design Principles for Metal-Containing Polymers 147 5.2.2.1 Decoration of Preformed Polymers with Ir(III) Complexes 149 5.2.2.2 Coordination of Ir(III) Precursor Complexes to Preformed Polymers 151 5.2.2.3 (Co)Polymerization of Ir(III)-Containing Monomers 157 5.2.2.4 Electropolymerization of Ir(III)-Containing Complexes 182 5.2.2.5 Synthetic Approaches Toward Ir(III)-Containing Polymers: The Roads Not Taken 186 5.3 Hyperbranched and Dendritic Architectures 187 5.3.1 Ir(III)-Containing Hyperbranched Polymers 187 5.3.2 Ir(III)-Containing Dendritic Systems 188 5.4 Concluding Remarks 191 References 192 6 Iridium(III) Complexes for OLED Application 205 Elena Longhi and Luisa De Cola 6.1 Introduction 205 6.2 Iridium Complexes 206 6.2.1 General Synthesis of Ir(III) Complexes 207 6.2.2 Luminescence of Iridium(III) Complexes 208 6.2.3 Emission Color Tuning in Iridium(III) Complexes 209 6.2.3.1 Influence of the (C^N) Ligand 210 6.2.3.2 Influence of the Ancillary Ligand 212 6.3 Organic Light-Emitting Diodes 216 6.3.1 Device Architecture and Fabrication 217 6.3.2 Device Lifetime 218 6.3.3 Device Efficiency 220 6.3.4 Phosphorescent Materials 221 6.3.5 Host Materials 222 6.4 Iridium(III) Complexes for PHOLED Application 227 6.4.1 Green Emitters 227 6.4.1.1 Role of the Ancillary Ligand 228 6.4.1.2 Modification of the Phenylpyridine Ring 229 6.4.1.3 Use of Different Tris-cyclometalated Motifs 230 6.4.2 Red Emitters 232 6.4.3 Blue Emitters 238 6.5 Conclusions and Perspectives 262 References 262 7 A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs) 275 Adam F. Henwood and Eli Zysman-Colman 7.1 Introduction 275 7.2 Device Fundamentals 278 7.3 Green Emitters 280 7.3.1 Archetypal Emitters 282 7.3.2 Pyrazoles 289 7.3.3 Imidazoles 292 7.3.4 Triazoles and Tetrazoles 293 7.3.5 Oxadiazoles 294 7.3.6 Thiophenes 296 7.3.7 Intramolecular
-Stacked Emitters 296 7.3.8 Supramolecular Emitters 300 7.4 Blue Emitters 301 7.4.1 [Ir(ppy)2(bpy)]+-Type Emitters 302 7.4.2 Pyrazoles 307 7.4.3 Imidazoles 312 7.4.4 Triazoles 313 7.4.5 Oxadiazoles 316 7.4.6 N-Heterocyclic Carbenes 320 7.4.7 Phosphines 322 7.5 Yellow Emitters 323 7.5.1 [Ir(ppy)2(bpy)]+-Type Emitters 324 7.5.2 Imidazole Emitters 327 7.5.3 Anionic Emitters 328 7.5.4 Intramolecularly
-Stacked Emitters 328 7.5.5 Multifunctional or Supramolecular Emitters 332 7.6 Orange-Red Emitters 334 7.6.1 [Ir(ppy)2(bpy)]+-Type Emitters 335 7.6.2 Emitters Bearing Five-Membered Heterocyclic Rings 340 7.6.3 Intramolecular
-Stacked Emitters 341 7.6.4 Multifunctional Emitters 345 7.7 Conclusions and Outlook 348 Acknowledgements 349 References 349 VOLUME 2 8 Electrochemiluminescence of Iridium Complexes 359 Sarah E. Laird and Conor F. Hogan 8.1 Background and Overview of Electrochemiluminescence 359 8.1.1 ECL from Metal Complexes 362 8.2 Iridium ECL 363 8.2.1 First Examples 363 8.2.2 Renewed Interest in Iridium ECL Stimulated by Progress in the Field of Light-Emitting Devices 364 8.2.3 Early Advances in Theoretical Understanding and Electrochemiluminophore Design 366 8.2.4 Modified Electrode Systems 370 8.2.5 ECL-Based Sensing Strategies 372 8.2.6 Issues Related to ECL of Iridium Complexes in Aqueous Media and Quenching by Oxygen 384 8.2.7 Tuning ECL Emission Colour and Redox Properties 386 8.2.8 Potential-Resolved Multicolour ECL 399 8.2.8.1 Miscellaneous ECL Systems Involving Iridium Complexes 405 8.2.9 Conclusion and Future Prospects 406 List of Ligand Abbreviations Used in Text 406 References 407 9 Strategic Applications of Luminescent Iridium(III) Complexes as Biomolecular Probes, Cellular Imaging Reagents, and Photodynamic Therapeutics 415 Karson Ka-Shun Tso and Kenneth Kam-Wing Lo 9.1 Introduction 415 9.2 General Cellular Staining Reagents 416 9.3 Hypoxia Sensing Probes 423 9.4 Molecular and Ion Intracellular Probes 427 9.4.1 Intracellular Probes for Sulfur-Containing Species 427 9.4.2 Intracellular Probes for Metal Ions 433 9.4.3 Intracellular Probes for Hypochlorous Acid and Hypochlorite 437 9.4.4 Intracellular Probes for Nitric Oxide 439 9.5 Organelle-Targeting Bioimaging Reagents 441 9.5.1 Nucleus 441 9.5.2 Nucleoli 443 9.5.3 Golgi Apparatus 445 9.5.4 Mitochondria 447 9.6 Functionalized Polypeptides for Bioimaging 450 9.7 Polymers and Nanoparticles for Bioimaging 454 9.8 Photocytotoxic Reagents and Photodynamic Therapeutics 458 9.9 Conclusion 466 Acknowledgements 466 Abbreviations 466 References 469 10 Iridium Complexes in the Development of Optical Sensors 479 Teresa Ramón-Márquez, Marta Marín-Suárez, Alberto Fernández-Gutiérrez and J. F. Fernández-Sánchez 10.1 Generalities of Optical Sensors 479 10.2 Ir(III) Used as Optical Probes 481 10.2.1 Optical Probes for the Detection of Gaseous Species 481 10.2.1.1 Oxygen 482 10.2.1.2 Other Gaseous Species 483 10.2.2 Optical Probes for the Detection of Ionic Species 485 10.2.2.1 Cations 485 10.2.2.2 pH 491 10.2.2.3 Anions 493 10.2.3 Optical Probes for the Detection of Biomolecules 498 10.2.3.1 Amino Acids and Proteins 498 10.2.3.2 Nucleotides and Nucleic Acids 506 10.2.4 Optical Probes for the Detection of Other Small Molecules 506 10.2.4.1 Explosives 506 10.2.4.2 Free Radicals 507 10.2.4.3 H2O2 508 10.2.4.4 Amines 508 10.2.4.5 Silver Salts 508 10.2.4.6 Hypochlorous Acid (HOCl) 508 10.3 Ir(III) Used in the Development of Sensing Phases 509 10.3.1 Sensing Phases for the Detection of Gases 509 10.3.1.1 Oxygen 509 10.3.1.2 Others Gases 516 10.3.2 Sensing Phases for the Detection of Ions 516 10.3.3 Sensing Phases for the Detection of Biomolecules 517 10.3.3.1 Glucose 518 10.3.3.2 BSA 520 10.3.3.3 Cysteine and Homocysteine 520 10.3.3.4 Heparin 520 10.3.3.5 Histone 521 10.3.4 Sensing Phases for Multiparametric Sensing 521 10.4 Conclusion and Future Challenges 522 Acronyms Used in the Names of the Complexes 525 References 528 11 Photoredox Catalysis of Iridium(III)-Based Photosensitizers 541 Timothy M. Monos and Corey R. J. Stephenson 11.1 Introduction 541 11.1.1 Photoredox Catalysis 541 11.1.2 Principles of Photoredox Catalysis 542 11.1.3 Iridium(III) Photocatalyst Design 542 11.1.4 Ir(III) Photocatalyst synthesis 545 11.2 Iridium-Based Photoredox Catalysis in Organic Synthesis 547 11.2.1 Net Oxidative Reactions 547 11.2.1.1 Amine Oxidation and Functionalization 547 11.2.1.2 Arene Oxidation 551 11.2.2 Net Reductive Reactions 551 11.2.2.1 Dehalogenation Reactions 551 11.2.2.2 Ketyl Radical Chemistry 553 11.2.3 Redox-Neutral Reactions 554 11.2.3.1 Atom Transfer Radical Addition 555 11.2.3.2 Radical-Based Arene Addition Reactions 561 11.2.3.3 Tandem Catalysis Methods 565 11.2.4 Amine Fragmentation 571 11.3 Conclusion 574 References 574 12 Solar Fuel Generation: Structural and Functional Evolution of Iridium Photosensitizers 583 Husain N. Kagalwala, Danielle N. Chirdon and Stefan Bernhard 12.1 Introduction 583 12.2 Fundamentals of [Ir(C^N)2(N^N)]+ Photosensitizers 585 12.2.1 Synthesis and Structure 585 12.2.2 Electronics: Photophysics and Electrochemistry 585 12.2.3 Complexes Made to Order 588 12.3 Application of [Ir(C^N)2(N^N)]+ in Photocatalytic Water Reduction 589 12.3.1 Initial Exploration 589 12.3.2 Systems with Non-precious Components 591 12.3.3 Strategies for Improved Efficiency 594 12.3.3.1 New C^N Ligands 594 12.3.3.2 New N^N Ligands 597 12.3.3.3 Orchestration 599 12.4 Alternative Iridium Structures 603 12.4.1 Tridentate Coordination 603 12.4.2 Tris-Cyclometalated Complexes 605 12.4.3 Dinuclear Iridium Complexes 606 12.5 Outlook 607 Acknowledgements 609 References 610 13 Iridium Complexes in Water Oxidation Catalysis 617 Ilaria Corbucci, Alceo Macchioni and Martin Albrecht 13.1 Introduction 617 13.2 Sacrificial Oxidants 619 13.2.1 Cerium(IV) Ammonium Nitrate 620 13.2.2 Sodium Periodate 620 13.3 Molecular Iridium Catalyst for Water Oxidation 621 13.3.1 Ir WOCs without Cp
621 13.3.2 Ir WOCs with Cp
624 13.3.3 Cp
Ir WOCs Based on Carbene-Type Ligands 632 13.3.3.1 Cp
Ir WOCs Bearing Normal Carbene-Type Ligands 633 13.3.3.2 Cp
Ir WOCs Bearing Abnormal Carbene-Type Ligands 636 13.3.3.3 Comparison of Catalytic Activity of Cp
Ir Bearing Mesoionic Imidazolylidene Ligand or the Mesoionic Triazolylidene Analogue 638 13.3.4 Heterogenized Molecular Iridium Catalyst for Water Oxidation 640 13.3.5 Iridium WOC as Photocatalyst for Water Oxidation under Visible Light Irradiation 645 13.4 Conclusions 647 Acknowledgements 648 Glossary of Terms and Abbreviations 648 References 649 14 Iridium Complexes as Photoactive Center for Light Harvesting and Solar Cell Applications 655 Etienne Baranoff and Prashant Kumar 14.1 Introduction 655 14.2 Photoinduced Electron Transfer in Multicomponent Arrays 656 14.2.1 Ir(tpy)2 Fragment (tpy = 2,2 :6 -2 -terpyridine) 656 14.2.2 Cyclometalated Iridium(III) 660 14.3 Iridium Complexes as Photoactive Center for Solar Cell Applications 665 14.3.1 Sensitizer for Dye-Sensitized Solar Cells 665 14.3.2 Iridium Complexes for Organic Photovoltaic Devices 673 14.4 Conclusions 676 References 677 Index 683
List of Contributors xv Foreword xvii Preface xix VOLUME 1 1 Archetypal Iridium(III) Compounds for Optoelectronic and Photonic Applications: Photophysical Properties and Synthetic Methods 1 Joseph C. Deaton and Felix N. Castellano 1.1 Introduction 1 1.2 Iridium Complex Ion Dopants in Silver Halide Photographic Materials 1 1.3 Overview of the Photophysical Properties of C^N and C^C: Cyclometalated Ir(III) Complexes 2 1.4 Importance of Ir
C Bonds in the Archetypal Ir(III) Complexes for Optoelectronic and Photonic Applications 9 1.5 Tuning Emission Color 14 1.6 Absorbance and Photoluminescence of C^N Cyclometalated Ir(III) Complexes 17 1.7 SOC Mechanism: Radiative Decay Rates and ZFS 23 1.8 Non-Radiative Decay Rates 39 1.9 Synthetic Methods Targeting C^N Cyclometalated Ir(III) Compounds 42 1.10 Synthetic Methods for Cyclometalated Ir(III) Compounds Containing Carbenes 47 1.11 Conclusions 48 Acknowledgements 49 Abbreviations for Ligands in Ir(III) Complexes 49 References 50 2 Multinuclear Iridium Complexes 71 J. A. Gareth Williams 2.1 Introduction 71 2.2 Compounds Incorporating 'Single Atom Bridges':
-Chloro,
-Oxo and
-Aza 72 2.2.1
-Chloro-Bridged Complexes 72 2.2.2
-Aza-Bridged Complexes 74 2.2.3
-Hydroxo-Bridged Complexes 76 2.3 Polyatomic Acyclic Bridges: Acetylides, Cyanides and Hydrazides 78 2.4 Compounds with Heterocyclic Bridges 82 2.4.1 Bis-(N^N)-Coordinating Ligands and Related Systems Incorporating At Least One N^N Unit 83 2.4.2 Bis-(N^C)-Coordinating Ligands 89 2.5 Multinuclear Complexes Featuring Conjugated Bridges between Iridium-Bound Polypyridyl or Arylpyridyl Ligands 93 2.5.1 Systems Incorporating C
C or N=N Bridges with One or More [Ir(N^C)2(N^N)]+ Units 95 2.5.2 Multinuclear Complexes Incorporating Phenyl and Polyphenylene Bridges between the Ligands: 'Supramolecular Assemblies' 96 2.6 Concluding Remarks 104 Acknowledgements 104 References 104 3 Soft Materials and Soft Salts Based on Iridium Complexes 111 Etienne Baranoff and Yafei Wang 3.1 Introduction 111 3.2 Liquid Crystals 112 3.3 Gels 115 3.4 Micelles 116 3.5 Langmuir-Blodgett Films 118 3.6 Soft Salts 118 3.7 Conclusion 123 Acknowledgements 123 References 123 4 Porous Materials Based on Precious Metal Building Blocks for Solar Energy Applications 127 Daniel Micheroni and Wenbin Lin 4.1 Introduction 127 4.2 The Luminescent Nature of MOFs and Their Use in Chemical Applications 129 4.3 Energy Transfer in Porous Materials 134 4.4 Porous Materials for Water Oxidation 136 4.5 Porous Materials for Proton Reduction 138 4.6 Porous Materials for CO2 Reduction 140 4.7 Conclusions and Outlook 141 References 141 5 Polymeric Architectures Containing Phosphorescent Iridium(III) Complexes 145 Andreas Winter and Ulrich S. Schubert 5.1 Introduction 145 5.2 Ir(III)-Containing Polymers: Classification, Design Principles, and Syntheses 146 5.2.1 Classification of Ir(III)-Containing Polymers 146 5.2.2 Design Principles for Metal-Containing Polymers 147 5.2.2.1 Decoration of Preformed Polymers with Ir(III) Complexes 149 5.2.2.2 Coordination of Ir(III) Precursor Complexes to Preformed Polymers 151 5.2.2.3 (Co)Polymerization of Ir(III)-Containing Monomers 157 5.2.2.4 Electropolymerization of Ir(III)-Containing Complexes 182 5.2.2.5 Synthetic Approaches Toward Ir(III)-Containing Polymers: The Roads Not Taken 186 5.3 Hyperbranched and Dendritic Architectures 187 5.3.1 Ir(III)-Containing Hyperbranched Polymers 187 5.3.2 Ir(III)-Containing Dendritic Systems 188 5.4 Concluding Remarks 191 References 192 6 Iridium(III) Complexes for OLED Application 205 Elena Longhi and Luisa De Cola 6.1 Introduction 205 6.2 Iridium Complexes 206 6.2.1 General Synthesis of Ir(III) Complexes 207 6.2.2 Luminescence of Iridium(III) Complexes 208 6.2.3 Emission Color Tuning in Iridium(III) Complexes 209 6.2.3.1 Influence of the (C^N) Ligand 210 6.2.3.2 Influence of the Ancillary Ligand 212 6.3 Organic Light-Emitting Diodes 216 6.3.1 Device Architecture and Fabrication 217 6.3.2 Device Lifetime 218 6.3.3 Device Efficiency 220 6.3.4 Phosphorescent Materials 221 6.3.5 Host Materials 222 6.4 Iridium(III) Complexes for PHOLED Application 227 6.4.1 Green Emitters 227 6.4.1.1 Role of the Ancillary Ligand 228 6.4.1.2 Modification of the Phenylpyridine Ring 229 6.4.1.3 Use of Different Tris-cyclometalated Motifs 230 6.4.2 Red Emitters 232 6.4.3 Blue Emitters 238 6.5 Conclusions and Perspectives 262 References 262 7 A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs) 275 Adam F. Henwood and Eli Zysman-Colman 7.1 Introduction 275 7.2 Device Fundamentals 278 7.3 Green Emitters 280 7.3.1 Archetypal Emitters 282 7.3.2 Pyrazoles 289 7.3.3 Imidazoles 292 7.3.4 Triazoles and Tetrazoles 293 7.3.5 Oxadiazoles 294 7.3.6 Thiophenes 296 7.3.7 Intramolecular
-Stacked Emitters 296 7.3.8 Supramolecular Emitters 300 7.4 Blue Emitters 301 7.4.1 [Ir(ppy)2(bpy)]+-Type Emitters 302 7.4.2 Pyrazoles 307 7.4.3 Imidazoles 312 7.4.4 Triazoles 313 7.4.5 Oxadiazoles 316 7.4.6 N-Heterocyclic Carbenes 320 7.4.7 Phosphines 322 7.5 Yellow Emitters 323 7.5.1 [Ir(ppy)2(bpy)]+-Type Emitters 324 7.5.2 Imidazole Emitters 327 7.5.3 Anionic Emitters 328 7.5.4 Intramolecularly
-Stacked Emitters 328 7.5.5 Multifunctional or Supramolecular Emitters 332 7.6 Orange-Red Emitters 334 7.6.1 [Ir(ppy)2(bpy)]+-Type Emitters 335 7.6.2 Emitters Bearing Five-Membered Heterocyclic Rings 340 7.6.3 Intramolecular
-Stacked Emitters 341 7.6.4 Multifunctional Emitters 345 7.7 Conclusions and Outlook 348 Acknowledgements 349 References 349 VOLUME 2 8 Electrochemiluminescence of Iridium Complexes 359 Sarah E. Laird and Conor F. Hogan 8.1 Background and Overview of Electrochemiluminescence 359 8.1.1 ECL from Metal Complexes 362 8.2 Iridium ECL 363 8.2.1 First Examples 363 8.2.2 Renewed Interest in Iridium ECL Stimulated by Progress in the Field of Light-Emitting Devices 364 8.2.3 Early Advances in Theoretical Understanding and Electrochemiluminophore Design 366 8.2.4 Modified Electrode Systems 370 8.2.5 ECL-Based Sensing Strategies 372 8.2.6 Issues Related to ECL of Iridium Complexes in Aqueous Media and Quenching by Oxygen 384 8.2.7 Tuning ECL Emission Colour and Redox Properties 386 8.2.8 Potential-Resolved Multicolour ECL 399 8.2.8.1 Miscellaneous ECL Systems Involving Iridium Complexes 405 8.2.9 Conclusion and Future Prospects 406 List of Ligand Abbreviations Used in Text 406 References 407 9 Strategic Applications of Luminescent Iridium(III) Complexes as Biomolecular Probes, Cellular Imaging Reagents, and Photodynamic Therapeutics 415 Karson Ka-Shun Tso and Kenneth Kam-Wing Lo 9.1 Introduction 415 9.2 General Cellular Staining Reagents 416 9.3 Hypoxia Sensing Probes 423 9.4 Molecular and Ion Intracellular Probes 427 9.4.1 Intracellular Probes for Sulfur-Containing Species 427 9.4.2 Intracellular Probes for Metal Ions 433 9.4.3 Intracellular Probes for Hypochlorous Acid and Hypochlorite 437 9.4.4 Intracellular Probes for Nitric Oxide 439 9.5 Organelle-Targeting Bioimaging Reagents 441 9.5.1 Nucleus 441 9.5.2 Nucleoli 443 9.5.3 Golgi Apparatus 445 9.5.4 Mitochondria 447 9.6 Functionalized Polypeptides for Bioimaging 450 9.7 Polymers and Nanoparticles for Bioimaging 454 9.8 Photocytotoxic Reagents and Photodynamic Therapeutics 458 9.9 Conclusion 466 Acknowledgements 466 Abbreviations 466 References 469 10 Iridium Complexes in the Development of Optical Sensors 479 Teresa Ramón-Márquez, Marta Marín-Suárez, Alberto Fernández-Gutiérrez and J. F. Fernández-Sánchez 10.1 Generalities of Optical Sensors 479 10.2 Ir(III) Used as Optical Probes 481 10.2.1 Optical Probes for the Detection of Gaseous Species 481 10.2.1.1 Oxygen 482 10.2.1.2 Other Gaseous Species 483 10.2.2 Optical Probes for the Detection of Ionic Species 485 10.2.2.1 Cations 485 10.2.2.2 pH 491 10.2.2.3 Anions 493 10.2.3 Optical Probes for the Detection of Biomolecules 498 10.2.3.1 Amino Acids and Proteins 498 10.2.3.2 Nucleotides and Nucleic Acids 506 10.2.4 Optical Probes for the Detection of Other Small Molecules 506 10.2.4.1 Explosives 506 10.2.4.2 Free Radicals 507 10.2.4.3 H2O2 508 10.2.4.4 Amines 508 10.2.4.5 Silver Salts 508 10.2.4.6 Hypochlorous Acid (HOCl) 508 10.3 Ir(III) Used in the Development of Sensing Phases 509 10.3.1 Sensing Phases for the Detection of Gases 509 10.3.1.1 Oxygen 509 10.3.1.2 Others Gases 516 10.3.2 Sensing Phases for the Detection of Ions 516 10.3.3 Sensing Phases for the Detection of Biomolecules 517 10.3.3.1 Glucose 518 10.3.3.2 BSA 520 10.3.3.3 Cysteine and Homocysteine 520 10.3.3.4 Heparin 520 10.3.3.5 Histone 521 10.3.4 Sensing Phases for Multiparametric Sensing 521 10.4 Conclusion and Future Challenges 522 Acronyms Used in the Names of the Complexes 525 References 528 11 Photoredox Catalysis of Iridium(III)-Based Photosensitizers 541 Timothy M. Monos and Corey R. J. Stephenson 11.1 Introduction 541 11.1.1 Photoredox Catalysis 541 11.1.2 Principles of Photoredox Catalysis 542 11.1.3 Iridium(III) Photocatalyst Design 542 11.1.4 Ir(III) Photocatalyst synthesis 545 11.2 Iridium-Based Photoredox Catalysis in Organic Synthesis 547 11.2.1 Net Oxidative Reactions 547 11.2.1.1 Amine Oxidation and Functionalization 547 11.2.1.2 Arene Oxidation 551 11.2.2 Net Reductive Reactions 551 11.2.2.1 Dehalogenation Reactions 551 11.2.2.2 Ketyl Radical Chemistry 553 11.2.3 Redox-Neutral Reactions 554 11.2.3.1 Atom Transfer Radical Addition 555 11.2.3.2 Radical-Based Arene Addition Reactions 561 11.2.3.3 Tandem Catalysis Methods 565 11.2.4 Amine Fragmentation 571 11.3 Conclusion 574 References 574 12 Solar Fuel Generation: Structural and Functional Evolution of Iridium Photosensitizers 583 Husain N. Kagalwala, Danielle N. Chirdon and Stefan Bernhard 12.1 Introduction 583 12.2 Fundamentals of [Ir(C^N)2(N^N)]+ Photosensitizers 585 12.2.1 Synthesis and Structure 585 12.2.2 Electronics: Photophysics and Electrochemistry 585 12.2.3 Complexes Made to Order 588 12.3 Application of [Ir(C^N)2(N^N)]+ in Photocatalytic Water Reduction 589 12.3.1 Initial Exploration 589 12.3.2 Systems with Non-precious Components 591 12.3.3 Strategies for Improved Efficiency 594 12.3.3.1 New C^N Ligands 594 12.3.3.2 New N^N Ligands 597 12.3.3.3 Orchestration 599 12.4 Alternative Iridium Structures 603 12.4.1 Tridentate Coordination 603 12.4.2 Tris-Cyclometalated Complexes 605 12.4.3 Dinuclear Iridium Complexes 606 12.5 Outlook 607 Acknowledgements 609 References 610 13 Iridium Complexes in Water Oxidation Catalysis 617 Ilaria Corbucci, Alceo Macchioni and Martin Albrecht 13.1 Introduction 617 13.2 Sacrificial Oxidants 619 13.2.1 Cerium(IV) Ammonium Nitrate 620 13.2.2 Sodium Periodate 620 13.3 Molecular Iridium Catalyst for Water Oxidation 621 13.3.1 Ir WOCs without Cp
621 13.3.2 Ir WOCs with Cp
624 13.3.3 Cp
Ir WOCs Based on Carbene-Type Ligands 632 13.3.3.1 Cp
Ir WOCs Bearing Normal Carbene-Type Ligands 633 13.3.3.2 Cp
Ir WOCs Bearing Abnormal Carbene-Type Ligands 636 13.3.3.3 Comparison of Catalytic Activity of Cp
Ir Bearing Mesoionic Imidazolylidene Ligand or the Mesoionic Triazolylidene Analogue 638 13.3.4 Heterogenized Molecular Iridium Catalyst for Water Oxidation 640 13.3.5 Iridium WOC as Photocatalyst for Water Oxidation under Visible Light Irradiation 645 13.4 Conclusions 647 Acknowledgements 648 Glossary of Terms and Abbreviations 648 References 649 14 Iridium Complexes as Photoactive Center for Light Harvesting and Solar Cell Applications 655 Etienne Baranoff and Prashant Kumar 14.1 Introduction 655 14.2 Photoinduced Electron Transfer in Multicomponent Arrays 656 14.2.1 Ir(tpy)2 Fragment (tpy = 2,2 :6 -2 -terpyridine) 656 14.2.2 Cyclometalated Iridium(III) 660 14.3 Iridium Complexes as Photoactive Center for Solar Cell Applications 665 14.3.1 Sensitizer for Dye-Sensitized Solar Cells 665 14.3.2 Iridium Complexes for Organic Photovoltaic Devices 673 14.4 Conclusions 676 References 677 Index 683
C Bonds in the Archetypal Ir(III) Complexes for Optoelectronic and Photonic Applications 9 1.5 Tuning Emission Color 14 1.6 Absorbance and Photoluminescence of C^N Cyclometalated Ir(III) Complexes 17 1.7 SOC Mechanism: Radiative Decay Rates and ZFS 23 1.8 Non-Radiative Decay Rates 39 1.9 Synthetic Methods Targeting C^N Cyclometalated Ir(III) Compounds 42 1.10 Synthetic Methods for Cyclometalated Ir(III) Compounds Containing Carbenes 47 1.11 Conclusions 48 Acknowledgements 49 Abbreviations for Ligands in Ir(III) Complexes 49 References 50 2 Multinuclear Iridium Complexes 71 J. A. Gareth Williams 2.1 Introduction 71 2.2 Compounds Incorporating 'Single Atom Bridges':
-Chloro,
-Oxo and
-Aza 72 2.2.1
-Chloro-Bridged Complexes 72 2.2.2
-Aza-Bridged Complexes 74 2.2.3
-Hydroxo-Bridged Complexes 76 2.3 Polyatomic Acyclic Bridges: Acetylides, Cyanides and Hydrazides 78 2.4 Compounds with Heterocyclic Bridges 82 2.4.1 Bis-(N^N)-Coordinating Ligands and Related Systems Incorporating At Least One N^N Unit 83 2.4.2 Bis-(N^C)-Coordinating Ligands 89 2.5 Multinuclear Complexes Featuring Conjugated Bridges between Iridium-Bound Polypyridyl or Arylpyridyl Ligands 93 2.5.1 Systems Incorporating C
C or N=N Bridges with One or More [Ir(N^C)2(N^N)]+ Units 95 2.5.2 Multinuclear Complexes Incorporating Phenyl and Polyphenylene Bridges between the Ligands: 'Supramolecular Assemblies' 96 2.6 Concluding Remarks 104 Acknowledgements 104 References 104 3 Soft Materials and Soft Salts Based on Iridium Complexes 111 Etienne Baranoff and Yafei Wang 3.1 Introduction 111 3.2 Liquid Crystals 112 3.3 Gels 115 3.4 Micelles 116 3.5 Langmuir-Blodgett Films 118 3.6 Soft Salts 118 3.7 Conclusion 123 Acknowledgements 123 References 123 4 Porous Materials Based on Precious Metal Building Blocks for Solar Energy Applications 127 Daniel Micheroni and Wenbin Lin 4.1 Introduction 127 4.2 The Luminescent Nature of MOFs and Their Use in Chemical Applications 129 4.3 Energy Transfer in Porous Materials 134 4.4 Porous Materials for Water Oxidation 136 4.5 Porous Materials for Proton Reduction 138 4.6 Porous Materials for CO2 Reduction 140 4.7 Conclusions and Outlook 141 References 141 5 Polymeric Architectures Containing Phosphorescent Iridium(III) Complexes 145 Andreas Winter and Ulrich S. Schubert 5.1 Introduction 145 5.2 Ir(III)-Containing Polymers: Classification, Design Principles, and Syntheses 146 5.2.1 Classification of Ir(III)-Containing Polymers 146 5.2.2 Design Principles for Metal-Containing Polymers 147 5.2.2.1 Decoration of Preformed Polymers with Ir(III) Complexes 149 5.2.2.2 Coordination of Ir(III) Precursor Complexes to Preformed Polymers 151 5.2.2.3 (Co)Polymerization of Ir(III)-Containing Monomers 157 5.2.2.4 Electropolymerization of Ir(III)-Containing Complexes 182 5.2.2.5 Synthetic Approaches Toward Ir(III)-Containing Polymers: The Roads Not Taken 186 5.3 Hyperbranched and Dendritic Architectures 187 5.3.1 Ir(III)-Containing Hyperbranched Polymers 187 5.3.2 Ir(III)-Containing Dendritic Systems 188 5.4 Concluding Remarks 191 References 192 6 Iridium(III) Complexes for OLED Application 205 Elena Longhi and Luisa De Cola 6.1 Introduction 205 6.2 Iridium Complexes 206 6.2.1 General Synthesis of Ir(III) Complexes 207 6.2.2 Luminescence of Iridium(III) Complexes 208 6.2.3 Emission Color Tuning in Iridium(III) Complexes 209 6.2.3.1 Influence of the (C^N) Ligand 210 6.2.3.2 Influence of the Ancillary Ligand 212 6.3 Organic Light-Emitting Diodes 216 6.3.1 Device Architecture and Fabrication 217 6.3.2 Device Lifetime 218 6.3.3 Device Efficiency 220 6.3.4 Phosphorescent Materials 221 6.3.5 Host Materials 222 6.4 Iridium(III) Complexes for PHOLED Application 227 6.4.1 Green Emitters 227 6.4.1.1 Role of the Ancillary Ligand 228 6.4.1.2 Modification of the Phenylpyridine Ring 229 6.4.1.3 Use of Different Tris-cyclometalated Motifs 230 6.4.2 Red Emitters 232 6.4.3 Blue Emitters 238 6.5 Conclusions and Perspectives 262 References 262 7 A Comprehensive Review of Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs) 275 Adam F. Henwood and Eli Zysman-Colman 7.1 Introduction 275 7.2 Device Fundamentals 278 7.3 Green Emitters 280 7.3.1 Archetypal Emitters 282 7.3.2 Pyrazoles 289 7.3.3 Imidazoles 292 7.3.4 Triazoles and Tetrazoles 293 7.3.5 Oxadiazoles 294 7.3.6 Thiophenes 296 7.3.7 Intramolecular
-Stacked Emitters 296 7.3.8 Supramolecular Emitters 300 7.4 Blue Emitters 301 7.4.1 [Ir(ppy)2(bpy)]+-Type Emitters 302 7.4.2 Pyrazoles 307 7.4.3 Imidazoles 312 7.4.4 Triazoles 313 7.4.5 Oxadiazoles 316 7.4.6 N-Heterocyclic Carbenes 320 7.4.7 Phosphines 322 7.5 Yellow Emitters 323 7.5.1 [Ir(ppy)2(bpy)]+-Type Emitters 324 7.5.2 Imidazole Emitters 327 7.5.3 Anionic Emitters 328 7.5.4 Intramolecularly
-Stacked Emitters 328 7.5.5 Multifunctional or Supramolecular Emitters 332 7.6 Orange-Red Emitters 334 7.6.1 [Ir(ppy)2(bpy)]+-Type Emitters 335 7.6.2 Emitters Bearing Five-Membered Heterocyclic Rings 340 7.6.3 Intramolecular
-Stacked Emitters 341 7.6.4 Multifunctional Emitters 345 7.7 Conclusions and Outlook 348 Acknowledgements 349 References 349 VOLUME 2 8 Electrochemiluminescence of Iridium Complexes 359 Sarah E. Laird and Conor F. Hogan 8.1 Background and Overview of Electrochemiluminescence 359 8.1.1 ECL from Metal Complexes 362 8.2 Iridium ECL 363 8.2.1 First Examples 363 8.2.2 Renewed Interest in Iridium ECL Stimulated by Progress in the Field of Light-Emitting Devices 364 8.2.3 Early Advances in Theoretical Understanding and Electrochemiluminophore Design 366 8.2.4 Modified Electrode Systems 370 8.2.5 ECL-Based Sensing Strategies 372 8.2.6 Issues Related to ECL of Iridium Complexes in Aqueous Media and Quenching by Oxygen 384 8.2.7 Tuning ECL Emission Colour and Redox Properties 386 8.2.8 Potential-Resolved Multicolour ECL 399 8.2.8.1 Miscellaneous ECL Systems Involving Iridium Complexes 405 8.2.9 Conclusion and Future Prospects 406 List of Ligand Abbreviations Used in Text 406 References 407 9 Strategic Applications of Luminescent Iridium(III) Complexes as Biomolecular Probes, Cellular Imaging Reagents, and Photodynamic Therapeutics 415 Karson Ka-Shun Tso and Kenneth Kam-Wing Lo 9.1 Introduction 415 9.2 General Cellular Staining Reagents 416 9.3 Hypoxia Sensing Probes 423 9.4 Molecular and Ion Intracellular Probes 427 9.4.1 Intracellular Probes for Sulfur-Containing Species 427 9.4.2 Intracellular Probes for Metal Ions 433 9.4.3 Intracellular Probes for Hypochlorous Acid and Hypochlorite 437 9.4.4 Intracellular Probes for Nitric Oxide 439 9.5 Organelle-Targeting Bioimaging Reagents 441 9.5.1 Nucleus 441 9.5.2 Nucleoli 443 9.5.3 Golgi Apparatus 445 9.5.4 Mitochondria 447 9.6 Functionalized Polypeptides for Bioimaging 450 9.7 Polymers and Nanoparticles for Bioimaging 454 9.8 Photocytotoxic Reagents and Photodynamic Therapeutics 458 9.9 Conclusion 466 Acknowledgements 466 Abbreviations 466 References 469 10 Iridium Complexes in the Development of Optical Sensors 479 Teresa Ramón-Márquez, Marta Marín-Suárez, Alberto Fernández-Gutiérrez and J. F. Fernández-Sánchez 10.1 Generalities of Optical Sensors 479 10.2 Ir(III) Used as Optical Probes 481 10.2.1 Optical Probes for the Detection of Gaseous Species 481 10.2.1.1 Oxygen 482 10.2.1.2 Other Gaseous Species 483 10.2.2 Optical Probes for the Detection of Ionic Species 485 10.2.2.1 Cations 485 10.2.2.2 pH 491 10.2.2.3 Anions 493 10.2.3 Optical Probes for the Detection of Biomolecules 498 10.2.3.1 Amino Acids and Proteins 498 10.2.3.2 Nucleotides and Nucleic Acids 506 10.2.4 Optical Probes for the Detection of Other Small Molecules 506 10.2.4.1 Explosives 506 10.2.4.2 Free Radicals 507 10.2.4.3 H2O2 508 10.2.4.4 Amines 508 10.2.4.5 Silver Salts 508 10.2.4.6 Hypochlorous Acid (HOCl) 508 10.3 Ir(III) Used in the Development of Sensing Phases 509 10.3.1 Sensing Phases for the Detection of Gases 509 10.3.1.1 Oxygen 509 10.3.1.2 Others Gases 516 10.3.2 Sensing Phases for the Detection of Ions 516 10.3.3 Sensing Phases for the Detection of Biomolecules 517 10.3.3.1 Glucose 518 10.3.3.2 BSA 520 10.3.3.3 Cysteine and Homocysteine 520 10.3.3.4 Heparin 520 10.3.3.5 Histone 521 10.3.4 Sensing Phases for Multiparametric Sensing 521 10.4 Conclusion and Future Challenges 522 Acronyms Used in the Names of the Complexes 525 References 528 11 Photoredox Catalysis of Iridium(III)-Based Photosensitizers 541 Timothy M. Monos and Corey R. J. Stephenson 11.1 Introduction 541 11.1.1 Photoredox Catalysis 541 11.1.2 Principles of Photoredox Catalysis 542 11.1.3 Iridium(III) Photocatalyst Design 542 11.1.4 Ir(III) Photocatalyst synthesis 545 11.2 Iridium-Based Photoredox Catalysis in Organic Synthesis 547 11.2.1 Net Oxidative Reactions 547 11.2.1.1 Amine Oxidation and Functionalization 547 11.2.1.2 Arene Oxidation 551 11.2.2 Net Reductive Reactions 551 11.2.2.1 Dehalogenation Reactions 551 11.2.2.2 Ketyl Radical Chemistry 553 11.2.3 Redox-Neutral Reactions 554 11.2.3.1 Atom Transfer Radical Addition 555 11.2.3.2 Radical-Based Arene Addition Reactions 561 11.2.3.3 Tandem Catalysis Methods 565 11.2.4 Amine Fragmentation 571 11.3 Conclusion 574 References 574 12 Solar Fuel Generation: Structural and Functional Evolution of Iridium Photosensitizers 583 Husain N. Kagalwala, Danielle N. Chirdon and Stefan Bernhard 12.1 Introduction 583 12.2 Fundamentals of [Ir(C^N)2(N^N)]+ Photosensitizers 585 12.2.1 Synthesis and Structure 585 12.2.2 Electronics: Photophysics and Electrochemistry 585 12.2.3 Complexes Made to Order 588 12.3 Application of [Ir(C^N)2(N^N)]+ in Photocatalytic Water Reduction 589 12.3.1 Initial Exploration 589 12.3.2 Systems with Non-precious Components 591 12.3.3 Strategies for Improved Efficiency 594 12.3.3.1 New C^N Ligands 594 12.3.3.2 New N^N Ligands 597 12.3.3.3 Orchestration 599 12.4 Alternative Iridium Structures 603 12.4.1 Tridentate Coordination 603 12.4.2 Tris-Cyclometalated Complexes 605 12.4.3 Dinuclear Iridium Complexes 606 12.5 Outlook 607 Acknowledgements 609 References 610 13 Iridium Complexes in Water Oxidation Catalysis 617 Ilaria Corbucci, Alceo Macchioni and Martin Albrecht 13.1 Introduction 617 13.2 Sacrificial Oxidants 619 13.2.1 Cerium(IV) Ammonium Nitrate 620 13.2.2 Sodium Periodate 620 13.3 Molecular Iridium Catalyst for Water Oxidation 621 13.3.1 Ir WOCs without Cp
621 13.3.2 Ir WOCs with Cp
624 13.3.3 Cp
Ir WOCs Based on Carbene-Type Ligands 632 13.3.3.1 Cp
Ir WOCs Bearing Normal Carbene-Type Ligands 633 13.3.3.2 Cp
Ir WOCs Bearing Abnormal Carbene-Type Ligands 636 13.3.3.3 Comparison of Catalytic Activity of Cp
Ir Bearing Mesoionic Imidazolylidene Ligand or the Mesoionic Triazolylidene Analogue 638 13.3.4 Heterogenized Molecular Iridium Catalyst for Water Oxidation 640 13.3.5 Iridium WOC as Photocatalyst for Water Oxidation under Visible Light Irradiation 645 13.4 Conclusions 647 Acknowledgements 648 Glossary of Terms and Abbreviations 648 References 649 14 Iridium Complexes as Photoactive Center for Light Harvesting and Solar Cell Applications 655 Etienne Baranoff and Prashant Kumar 14.1 Introduction 655 14.2 Photoinduced Electron Transfer in Multicomponent Arrays 656 14.2.1 Ir(tpy)2 Fragment (tpy = 2,2 :6 -2 -terpyridine) 656 14.2.2 Cyclometalated Iridium(III) 660 14.3 Iridium Complexes as Photoactive Center for Solar Cell Applications 665 14.3.1 Sensitizer for Dye-Sensitized Solar Cells 665 14.3.2 Iridium Complexes for Organic Photovoltaic Devices 673 14.4 Conclusions 676 References 677 Index 683