- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Andere Kunden interessierten sich auch für
- Chris GibsonElementary Geometry of Differentiable Curves71,99 €
- E. Brian DaviesSpectral Theory and Geometry86,99 €
- Martin A. GuestHarmonic Maps, Loop Groups, and Integrable Systems61,99 €
- Katsumi NomizuAffine Differential Geometry72,99 €
- Luis A. SantaloIntegral Geometry and Geometric Probability70,99 €
- D. J. SaundersThe Geometry of Jet Bundles99,99 €
- Udo Hertrich-JerominIntroduction to Mobius Differential Geometry93,99 €
-
-
-
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 282
- Erscheinungstermin: 19. Mai 2011
- Englisch
- Abmessung: 229mm x 152mm x 17mm
- Gewicht: 462g
- ISBN-13: 9781107402270
- ISBN-10: 1107402271
- Artikelnr.: 33771787
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 282
- Erscheinungstermin: 19. Mai 2011
- Englisch
- Abmessung: 229mm x 152mm x 17mm
- Gewicht: 462g
- ISBN-13: 9781107402270
- ISBN-10: 1107402271
- Artikelnr.: 33771787
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Introduction: 1. The isoperimetric problem
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
Part I. Introduction: 1. The isoperimetric problem
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.