Isaac Chavel
Isoperimetric Inequalities
Isaac Chavel
Isoperimetric Inequalities
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Andere Kunden interessierten sich auch für
- Muhittin E. AydinDifferential Geometry87,95 €
- Ravi P. AgarwalInequalities for Differential Forms81,99 €
- L. C. G. RogersDiffusions, Markov Processes and Martingales83,99 €
- Torsten WedhornManifolds, Sheaves, and Cohomology65,99 €
- Loring W. TuDifferential Geometry52,99 €
- Gerard WalschapMultivariable Calculus and Differential Geometry27,99 €
- Gerd RudolphDifferential Geometry and Mathematical Physics114,99 €
-
-
-
This advanced introduction emphasizes the variety of ideas, techniques, and applications of the subject.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 282
- Erscheinungstermin: 7. Januar 2015
- Englisch
- Abmessung: 235mm x 157mm x 21mm
- Gewicht: 612g
- ISBN-13: 9780521802673
- ISBN-10: 0521802679
- Artikelnr.: 35010369
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 282
- Erscheinungstermin: 7. Januar 2015
- Englisch
- Abmessung: 235mm x 157mm x 21mm
- Gewicht: 612g
- ISBN-13: 9780521802673
- ISBN-10: 0521802679
- Artikelnr.: 35010369
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Introduction: 1. The isoperimetric problem
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
Part I. Introduction: 1. The isoperimetric problem
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.
2. The isoperimetric inequality in the plane
3. Preliminaries
4. Bibliographic notes
Part II. Differential Geometric Methods: 1. The C2 uniqueness theory
2. The C1 isoperimetric inequality
3. Bibliographic notes
Part III. Minkowski Area and Perimeter: 1. The Hausdorff metric on compacta
2. Minkowski area and Steiner symmetrization
3. Application: the Faber-Krahn inequality
4. Perimeter
5. Bibliographic notes
Part IV. Hausdorff Measure and Perimeter: 1. Hausdorff measure
2. The area formula for Lipschitz maps
3. Bibliographic notes
Part V. Isoperimetric Constants: 1. Riemannian geometric preliminaries
2. Isoperimetric constants
3. Discretizations and isoperimetric inequalities
4. Bibliographic notes
Part VI. Analytic Isoperimetric Inequalities: 1. L2-Sobolev inequalities
2. The compact case
3. Faber-Kahn inequalities
4. The Federer-Fleming theorem: the discrete case
5. Sobolev inequalities and discretizations
6. Bibliographic notes
Part VII. Laplace and Heat Operators: 1. Self-adjoint operators and their semigroups
2. The Laplacian
3. The heat equation and its kernels
4. The action of the heat semigroup
5. Simplest examples
6. Bibliographic notes
Part VIII. Large-Time Heat Diffusion: 1. The main problem
2. The Nash approach
3. The Varopoulos approach
4. Coulhon's modified Sobolev inequality
5. The denoument: geometric applications
6. Epilogue: the Faber-Kahn method
7. Bibliographic notes
Bibliography.