29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, an isotropic manifold is a manifold in which the geometry doesn''t depend on directions. An simple example is the surface of a sphere. A homogeneous space is a similar concept. A homogeneous space can be non-isotropic (for example, a flat torus), in the sense that an invariant metric tensor on a homogeneous space may not be isotropic. In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, an isotropic manifold is a manifold in which the geometry doesn''t depend on directions. An simple example is the surface of a sphere. A homogeneous space is a similar concept. A homogeneous space can be non-isotropic (for example, a flat torus), in the sense that an invariant metric tensor on a homogeneous space may not be isotropic. In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts continuously by symmetry in a transitive way. A special case of this is when the topological group, G, in question is the homeomorphism group of the space, X. In this case X is homogeneous if intuitively X looks locally the same everywhere. Some authors insist that the action of G be effective (i.e. faithful), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.