A grand challenge for science is to understand the human implications of global environmental change and to help society cope with those changes. Virtually all the scientific questions associated with this challenge depend on geospatial information (geoinformation) and on the ability of scientists, working individually and in groups, to interact with that information in flexible and increasingly complex ways. Another grand challenge is how to respond to calamities-terrorist activities, other human-induced crises, and natural disasters. Much of the information that underpins emergency preparedness, response, recovery, and mitigation is geospatial in nature. In terrorist situations, for example, origins and destinations of phone calls and e-mail messages, travel patterns of individuals, dispersal patterns of airborne chemicals, assessment of places at risk, and the allocation of resources all involve geospatial information. Much of the work addressing environment- and emergency-related concerns will depend on how productively humans are able to integrate, distill, and correlate a wide range of seemingly unrelated information. In addition to critical advances in location-aware computing, databases, and data mining methods, advances in the human-computer interface will couple new computational capabilities with human cognitive capabilities. This report outlines an interdisciplinary research roadmap at the intersection of computer science and geospatial information science. The report was developed by a committee convened by the Computer Science and Telecommunications Board of the National Research Council.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.