Anne Greenbaum
Iterative Methods for Solving Linear Systems
Anne Greenbaum
Iterative Methods for Solving Linear Systems
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Focuses on the analysis of iterative methods for solving linear systems.
Andere Kunden interessierten sich auch für
- Béatrice M RivièreDiscontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations105,99 €
- Raymond Hon-Fu ChanAn Introduction to Iterative Toeplitz Solvers89,99 €
- J M OrtegaIterative Solution of Nonlinear Equations in Several Variables102,99 €
- C T KelleyIterative Methods for Linear and Nonlinear Equations86,99 €
- Randall J LevequeFinite Difference Methods for Ordinary and Partial Differential Equations94,99 €
- C T KelleySolving Nonlinear Equations with Newton's Method69,99 €
- Anilchandra G LaddeIntroduction to Differential Equations, An: Deterministic Modeling, Methods and Analysis (Volume 1)89,99 €
-
-
-
Focuses on the analysis of iterative methods for solving linear systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 234
- Erscheinungstermin: 1. Januar 1987
- Englisch
- Abmessung: 253mm x 178mm x 13mm
- Gewicht: 422g
- ISBN-13: 9780898713961
- ISBN-10: 089871396X
- Artikelnr.: 23252193
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 234
- Erscheinungstermin: 1. Januar 1987
- Englisch
- Abmessung: 253mm x 178mm x 13mm
- Gewicht: 422g
- ISBN-13: 9780898713961
- ISBN-10: 089871396X
- Artikelnr.: 23252193
List of Algorithms
Preface
1. Introduction. Brief Overview of the State of the Art
Notation
Review of Relevant Linear Algebra
Part I. Krylov Subspace Approximations. 2. Some Iteration Methods. Simple Iteration
Orthomin(1) and Steepest Descent
Orthomin(2) and CG
Orthodir, MINRES, and GMRES
Derivation of MINRES and CG from the Lanczos Algorithm
3. Error Bounds for CG, MINRES, and GMRES. Hermitian Problems-CG and MINRES
Non-Hermitian Problems-GMRES
4. Effects of Finite Precision Arithmetic. Some Numerical Examples
The Lanczos Algorithm
A Hypothetical MINRES/CG Implementation
A Matrix Completion Problem
Orthogonal Polynomials
5. BiCG and Related Methods. The Two-Sided Lanczos Algorithm
The Biconjugate Gradient Algorithm
The Quasi-Minimal Residual Algorithm
Relation Between BiCG and QMR
The Conjugate Gradient Squared Algorithm
The BiCGSTAB Algorithm
Which Method Should I Use?
6. Is There A Short Recurrence for a Near-Optimal Approximation? The Faber and Manteuffel Result
Implications
7. Miscellaneous Issues. Symmetrizing the Problem
Error Estimation and Stopping Criteria
Attainable Accuracy
Multiple Right-Hand Sides and Block Methods
Computer Implementation
Part II. Preconditioners. 8. Overview and Preconditioned Algorithms. 9. Two Example Problems. The Diffusion Equation
The Transport Equation
10. Comparison of Preconditioners. Jacobi, Gauss--Seidel, SOR
The Perron--Frobenius Theorem
Comparison of Regular Splittings
Regular Splittings Used with the CG Algorithm
Optimal Diagonal and Block Diagonal Preconditioners
11. Incomplete Decompositions. Incomplete Cholesky Decomposition
Modified Incomplete Cholesky Decomposition
12. Multigrid and Domain Decomposition Methods. Multigrid Methods
Basic Ideas of Domain Decomposition Methods.
Preface
1. Introduction. Brief Overview of the State of the Art
Notation
Review of Relevant Linear Algebra
Part I. Krylov Subspace Approximations. 2. Some Iteration Methods. Simple Iteration
Orthomin(1) and Steepest Descent
Orthomin(2) and CG
Orthodir, MINRES, and GMRES
Derivation of MINRES and CG from the Lanczos Algorithm
3. Error Bounds for CG, MINRES, and GMRES. Hermitian Problems-CG and MINRES
Non-Hermitian Problems-GMRES
4. Effects of Finite Precision Arithmetic. Some Numerical Examples
The Lanczos Algorithm
A Hypothetical MINRES/CG Implementation
A Matrix Completion Problem
Orthogonal Polynomials
5. BiCG and Related Methods. The Two-Sided Lanczos Algorithm
The Biconjugate Gradient Algorithm
The Quasi-Minimal Residual Algorithm
Relation Between BiCG and QMR
The Conjugate Gradient Squared Algorithm
The BiCGSTAB Algorithm
Which Method Should I Use?
6. Is There A Short Recurrence for a Near-Optimal Approximation? The Faber and Manteuffel Result
Implications
7. Miscellaneous Issues. Symmetrizing the Problem
Error Estimation and Stopping Criteria
Attainable Accuracy
Multiple Right-Hand Sides and Block Methods
Computer Implementation
Part II. Preconditioners. 8. Overview and Preconditioned Algorithms. 9. Two Example Problems. The Diffusion Equation
The Transport Equation
10. Comparison of Preconditioners. Jacobi, Gauss--Seidel, SOR
The Perron--Frobenius Theorem
Comparison of Regular Splittings
Regular Splittings Used with the CG Algorithm
Optimal Diagonal and Block Diagonal Preconditioners
11. Incomplete Decompositions. Incomplete Cholesky Decomposition
Modified Incomplete Cholesky Decomposition
12. Multigrid and Domain Decomposition Methods. Multigrid Methods
Basic Ideas of Domain Decomposition Methods.
List of Algorithms
Preface
1. Introduction. Brief Overview of the State of the Art
Notation
Review of Relevant Linear Algebra
Part I. Krylov Subspace Approximations. 2. Some Iteration Methods. Simple Iteration
Orthomin(1) and Steepest Descent
Orthomin(2) and CG
Orthodir, MINRES, and GMRES
Derivation of MINRES and CG from the Lanczos Algorithm
3. Error Bounds for CG, MINRES, and GMRES. Hermitian Problems-CG and MINRES
Non-Hermitian Problems-GMRES
4. Effects of Finite Precision Arithmetic. Some Numerical Examples
The Lanczos Algorithm
A Hypothetical MINRES/CG Implementation
A Matrix Completion Problem
Orthogonal Polynomials
5. BiCG and Related Methods. The Two-Sided Lanczos Algorithm
The Biconjugate Gradient Algorithm
The Quasi-Minimal Residual Algorithm
Relation Between BiCG and QMR
The Conjugate Gradient Squared Algorithm
The BiCGSTAB Algorithm
Which Method Should I Use?
6. Is There A Short Recurrence for a Near-Optimal Approximation? The Faber and Manteuffel Result
Implications
7. Miscellaneous Issues. Symmetrizing the Problem
Error Estimation and Stopping Criteria
Attainable Accuracy
Multiple Right-Hand Sides and Block Methods
Computer Implementation
Part II. Preconditioners. 8. Overview and Preconditioned Algorithms. 9. Two Example Problems. The Diffusion Equation
The Transport Equation
10. Comparison of Preconditioners. Jacobi, Gauss--Seidel, SOR
The Perron--Frobenius Theorem
Comparison of Regular Splittings
Regular Splittings Used with the CG Algorithm
Optimal Diagonal and Block Diagonal Preconditioners
11. Incomplete Decompositions. Incomplete Cholesky Decomposition
Modified Incomplete Cholesky Decomposition
12. Multigrid and Domain Decomposition Methods. Multigrid Methods
Basic Ideas of Domain Decomposition Methods.
Preface
1. Introduction. Brief Overview of the State of the Art
Notation
Review of Relevant Linear Algebra
Part I. Krylov Subspace Approximations. 2. Some Iteration Methods. Simple Iteration
Orthomin(1) and Steepest Descent
Orthomin(2) and CG
Orthodir, MINRES, and GMRES
Derivation of MINRES and CG from the Lanczos Algorithm
3. Error Bounds for CG, MINRES, and GMRES. Hermitian Problems-CG and MINRES
Non-Hermitian Problems-GMRES
4. Effects of Finite Precision Arithmetic. Some Numerical Examples
The Lanczos Algorithm
A Hypothetical MINRES/CG Implementation
A Matrix Completion Problem
Orthogonal Polynomials
5. BiCG and Related Methods. The Two-Sided Lanczos Algorithm
The Biconjugate Gradient Algorithm
The Quasi-Minimal Residual Algorithm
Relation Between BiCG and QMR
The Conjugate Gradient Squared Algorithm
The BiCGSTAB Algorithm
Which Method Should I Use?
6. Is There A Short Recurrence for a Near-Optimal Approximation? The Faber and Manteuffel Result
Implications
7. Miscellaneous Issues. Symmetrizing the Problem
Error Estimation and Stopping Criteria
Attainable Accuracy
Multiple Right-Hand Sides and Block Methods
Computer Implementation
Part II. Preconditioners. 8. Overview and Preconditioned Algorithms. 9. Two Example Problems. The Diffusion Equation
The Transport Equation
10. Comparison of Preconditioners. Jacobi, Gauss--Seidel, SOR
The Perron--Frobenius Theorem
Comparison of Regular Splittings
Regular Splittings Used with the CG Algorithm
Optimal Diagonal and Block Diagonal Preconditioners
11. Incomplete Decompositions. Incomplete Cholesky Decomposition
Modified Incomplete Cholesky Decomposition
12. Multigrid and Domain Decomposition Methods. Multigrid Methods
Basic Ideas of Domain Decomposition Methods.