74,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as…mehr

Produktbeschreibung
An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as those found in pipes and channels.

The central objective of the symposium was to discuss the increasing amount of experimental and numerical evidence for finite amplitude solutions to the Navier-Stokes equations and to set the work into a modern theoretical context. The participants included many of the leading authorities in the subject and this volume captures much of theflavour of the resulting stimulating and lively discussions.
Autorenporträt
Tom Mullin, University of Manchester, UK / R. R. Kerswell, University of Bristol, UK