27th International Workshop, JSSPP 2024, San Francisco, CA, USA, May 31, 2024, Revised Selected Papers Herausgegeben:Klusácek, Dalibor; Corbalán, Julita; Rodrigo, Gonzalo P.
27th International Workshop, JSSPP 2024, San Francisco, CA, USA, May 31, 2024, Revised Selected Papers Herausgegeben:Klusácek, Dalibor; Corbalán, Julita; Rodrigo, Gonzalo P.
This book constitutes the refereed proceedings of the 27th International Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP 2024, held in San Francisco, CA, USA, on May 31, 2024. The 10 full papers included in this book were carefully reviewed and selected from 15 submissions. The JSSPP 2024 covers several interesting problems within the resource management and scheduling domains.
This book constitutes the refereed proceedings of the 27th International Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP 2024, held in San Francisco, CA, USA, on May 31, 2024.
The 10 full papers included in this book were carefully reviewed and selected from 15 submissions. The JSSPP 2024 covers several interesting problems within the resource management and scheduling domains.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
.- Technical papers. .- Real-life HPC Workload Trace Featuring Refined Job Runtime Estimates. .- An Empirical Study of Machine Learning-based Synthetic Job Trace Generation Methods. .- Clustering Based Job Runtime Prediction for Backfilling Using Classification. .- Launchpad: Learning to Schedule Using Offline and Online RL Methods. .- Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing. .- Evaluation of Heuristic Task-to-Thread Mapping Using Static and Dynamic Approaches. .- Challenges in parallel matrix chain multiplication. .- A node selection method for on-demand job execution with considering deadline constraints. .- Maximizing Energy Budget Utilization Using Dynamic Power Cap Control. .- Run your HPC jobs in Eco-Mode: revealing the potential of user-assisted power capping in supercomputing systems.
.- Technical papers. .- Real-life HPC Workload Trace Featuring Refined Job Runtime Estimates. .- An Empirical Study of Machine Learning-based Synthetic Job Trace Generation Methods. .- Clustering Based Job Runtime Prediction for Backfilling Using Classification. .- Launchpad: Learning to Schedule Using Offline and Online RL Methods. .- Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing. .- Evaluation of Heuristic Task-to-Thread Mapping Using Static and Dynamic Approaches. .- Challenges in parallel matrix chain multiplication. .- A node selection method for on-demand job execution with considering deadline constraints. .- Maximizing Energy Budget Utilization Using Dynamic Power Cap Control. .- Run your HPC jobs in Eco-Mode: revealing the potential of user-assisted power capping in supercomputing systems.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826