Daniel Kahneman / Paul Slovic / Amos Tversky (eds.)
Judgment under Uncertainty
Herausgegeben:Kahneman, Daniel; Slovic, Paul; Tversky, Amos
Daniel Kahneman / Paul Slovic / Amos Tversky (eds.)
Judgment under Uncertainty
Herausgegeben:Kahneman, Daniel; Slovic, Paul; Tversky, Amos
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The thirty-five chapters in this book describe various judgmental heuristics and the biases they produce, not only in laboratory experiments but in important social, medical, and political situations as well. Individual chapters discuss the representativeness and availability heuristics, problems in judging covariation and control, overconfidence, multistage inference, social perception, medical diagnosis, risk perception, and methods for correcting and improving judgments under uncertainty. About half of the chapters are edited versions of classic articles; the remaining chapters are newly…mehr
Andere Kunden interessierten sich auch für
- Gottfried GabrielErkenntnis24,95 €
- Ingrid Nifosi-SuttonThe Protection of Vulnerable Groups Under International Human Rights Law195,99 €
- Justus BuchlerNature and Judgment61,00 €
- Andrew AlföldiA Festival of Isis in Rome Under the Christian Emperors of the IVth Century = Isis-szertartások Rómában a Negyedik Század Keresztény Császárai Alatt.33,99 €
- Charles E. CraveyUnder the Canopy20,99 €
- James BuchananModern Atheism under its forms of Pantheism, Materialism, Secularism, Development, and Natural Laws24,99 €
- Talaat El-GamalOptimal Water Management42,99 €
-
-
-
The thirty-five chapters in this book describe various judgmental heuristics and the biases they produce, not only in laboratory experiments but in important social, medical, and political situations as well. Individual chapters discuss the representativeness and availability heuristics, problems in judging covariation and control, overconfidence, multistage inference, social perception, medical diagnosis, risk perception, and methods for correcting and improving judgments under uncertainty. About half of the chapters are edited versions of classic articles; the remaining chapters are newly written for this book. Most review multiple studies or entire subareas of research and application rather than describing single experimental studies. This book will be useful to a wide range of students and researchers, as well as to decision makers seeking to gain insight into their judgments and to improve them.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Artikelnr. des Verlages: 14999122
- 1982.
- Seitenzahl: 572
- Erscheinungstermin: 22. März 2019
- Englisch
- Abmessung: 229mm x 152mm x 31mm
- Gewicht: 752g
- ISBN-13: 9780521284141
- ISBN-10: 0521284147
- Artikelnr.: 14999122
- Verlag: Cambridge University Press
- Artikelnr. des Verlages: 14999122
- 1982.
- Seitenzahl: 572
- Erscheinungstermin: 22. März 2019
- Englisch
- Abmessung: 229mm x 152mm x 31mm
- Gewicht: 752g
- ISBN-13: 9780521284141
- ISBN-10: 0521284147
- Artikelnr.: 14999122
Daniel Kahneman, geboren 1934 in Tel-Aviv, ist einer der weltweit einflussreichsten Kognitionspsychologen. Nach Stationen an der Hebrew University in Jerusalem und der University of British Columbia war er bis 1994 Professor an der University of California in Berkeley und hält seither die Eugene-Higgins-Professur für Psychologie an der Woodrow Wilson School der Princeton University. Kahnemann revolutionierte die Wissenschaft vom menschlichen Verhalten, indem er die Erkenntnisse der Hirnforschung und der Verhaltensbiologie zusammenführt und auf die Wirtschaftswissenschaften anwendet. Für seine Arbeit erhielt Kahneman zahlreiche Ehrenpreise namhafter Universitäten und wurde 2002 als erster Nicht-Ökonom mit dem Wirtschaftsnobelpreis ausgezeichnet.
Preface; Part I. Introduction: 1. Judgment under uncertainty: heuristics and biases Amos Tversky and Daniel Kahneman; Part II. Representativeness: 2. Belief in the law of small numbers Amos Tversky and Daniel Kahneman; 3. Subjective probability: a judgment of representativeness Daniel Kahneman and Amos Tversky; 4. On the psychology of presiction Daniel Kahneman and Amos Tversky; 5. Studies of representativeness Maya Bar-Hillel; 6. Judgments of and by representativeness Amos Tversky and Daniel Kahneman; Part III. Causality and Attribution: 7. Popular induction: information is not necessarily informative Richard E. Nisbett, Eugene Borgida, Rick Crandall and Harvey Reed; 8. Causal schemas in judgments under uncertainty Amos Tversky and Daniel Kahneman; 9. Shortcomings in the attribution process: on the origins and maintenance of erroneous social assessments Lee Ross and Craig A. Anderson; 10. Evidential impact of base rates Amos Tversky and Daniel Kahneman; Part IV. Availability: 11. Availability: a heuristic for judging frequency and probability Amos Tversky and Daniel Kahneman; 12. Egocentric biases in availability and attribution Michael Ross and Fiore Sicoly; 13. The availability bias in social perception and interaction Shelley E. Taylor; 14. The simulation heuristic Daniel Kahneman and Amos Tversky; Part V. Covariation and Control: 15. Informal covariation asssessment: data-based versus theory-based judgments Dennis L. Jennings, Teresa M. Amabile and Lee Ross; 16. The illusion of control Ellen J. Langer; 17. Test results are what you think they are Loren J. Chapman and Jean Chapman; 18. Probabilistic reasoning in clinical medicine: problems and opportunities David M. Eddy; 19. Learning from experience and suboptimal rules in decision making Hillel J. Einhorn; Part VI. Overconfidence: 20. Overconfidence in case-study judgments Stuart Oskamp; 21. A progress report on the training of probability assessors Marc Alpert and Howard Raiffa; 22. Calibration of probabilities: the state of the art to 1980 Sarah Lichtenstein, Baruch Fischhoff and Lawrence D. Phillips; 23. For those condemned to study the past: heuristics and biases in hindsight Baruch Fischhoff; Part VII. Multistage Evaluation: 24. Evaluation of compound probabilities in sequential choice John Cohen, E. I. Chesnick and D. Haran; 25. Conservatism in human information processing Ward Edwards; 26. The best-guess hypothesis in multistage inference Charles F. Gettys, Clinton Kelly III and Cameron R. Peterson; 27. Inferences of personal characteristics on the basis of information retrieved from one's memory Yaacov Trope; Part VIII. Corrective Procedures: 28. The robust beauty of improper linear models in decision making Robyn M. Dawes; 29. The vitality of mythical numbers Max Singer; 30. Intuitive prediction: biases and corrective procedures Daniel Kahneman and Amos Tversky; 31. Debiasing Baruch Fischhoff; 32. Improving inductive inference Richard E. Nesbett, David H. Krantz, Christopher Jepson and Geoffrey T. Fong; Part IX. Risk Perception: 33. Facts versus fears: understanding perceived risk Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein; Part X. Postscript: 34. On the study of statistical intuitions Daniel Kahneman and Amos Tversky; 35. Variants of uncertainty Daniel Kahneman and Amos Tversky; References; Index.
Preface; Part I. Introduction: 1. Judgment under uncertainty: heuristics and biases Amos Tversky and Daniel Kahneman; Part II. Representativeness: 2. Belief in the law of small numbers Amos Tversky and Daniel Kahneman; 3. Subjective probability: a judgment of representativeness Daniel Kahneman and Amos Tversky; 4. On the psychology of presiction Daniel Kahneman and Amos Tversky; 5. Studies of representativeness Maya Bar-Hillel; 6. Judgments of and by representativeness Amos Tversky and Daniel Kahneman; Part III. Causality and Attribution: 7. Popular induction: information is not necessarily informative Richard E. Nisbett, Eugene Borgida, Rick Crandall and Harvey Reed; 8. Causal schemas in judgments under uncertainty Amos Tversky and Daniel Kahneman; 9. Shortcomings in the attribution process: on the origins and maintenance of erroneous social assessments Lee Ross and Craig A. Anderson; 10. Evidential impact of base rates Amos Tversky and Daniel Kahneman; Part IV. Availability: 11. Availability: a heuristic for judging frequency and probability Amos Tversky and Daniel Kahneman; 12. Egocentric biases in availability and attribution Michael Ross and Fiore Sicoly; 13. The availability bias in social perception and interaction Shelley E. Taylor; 14. The simulation heuristic Daniel Kahneman and Amos Tversky; Part V. Covariation and Control: 15. Informal covariation asssessment: data-based versus theory-based judgments Dennis L. Jennings, Teresa M. Amabile and Lee Ross; 16. The illusion of control Ellen J. Langer; 17. Test results are what you think they are Loren J. Chapman and Jean Chapman; 18. Probabilistic reasoning in clinical medicine: problems and opportunities David M. Eddy; 19. Learning from experience and suboptimal rules in decision making Hillel J. Einhorn; Part VI. Overconfidence: 20. Overconfidence in case-study judgments Stuart Oskamp; 21. A progress report on the training of probability assessors Marc Alpert and Howard Raiffa; 22. Calibration of probabilities: the state of the art to 1980 Sarah Lichtenstein, Baruch Fischhoff and Lawrence D. Phillips; 23. For those condemned to study the past: heuristics and biases in hindsight Baruch Fischhoff; Part VII. Multistage Evaluation: 24. Evaluation of compound probabilities in sequential choice John Cohen, E. I. Chesnick and D. Haran; 25. Conservatism in human information processing Ward Edwards; 26. The best-guess hypothesis in multistage inference Charles F. Gettys, Clinton Kelly III and Cameron R. Peterson; 27. Inferences of personal characteristics on the basis of information retrieved from one's memory Yaacov Trope; Part VIII. Corrective Procedures: 28. The robust beauty of improper linear models in decision making Robyn M. Dawes; 29. The vitality of mythical numbers Max Singer; 30. Intuitive prediction: biases and corrective procedures Daniel Kahneman and Amos Tversky; 31. Debiasing Baruch Fischhoff; 32. Improving inductive inference Richard E. Nesbett, David H. Krantz, Christopher Jepson and Geoffrey T. Fong; Part IX. Risk Perception: 33. Facts versus fears: understanding perceived risk Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein; Part X. Postscript: 34. On the study of statistical intuitions Daniel Kahneman and Amos Tversky; 35. Variants of uncertainty Daniel Kahneman and Amos Tversky; References; Index.