H. Schubert
Kategorien II
H. Schubert
Kategorien II
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Keine ausführliche Beschreibung für "Kategorien II" verfügbar.
Andere Kunden interessierten sich auch für
- H. SchubertKategorien I109,95 €
- Herbert GoeringAsymptotische Methoden zur Lösung von Differentialgleichungen109,95 €
- H. ReichelStructural Induction on Partial Algebras, II78,99 €
- Hermann SchubertSystem der Arithmetik und Algebra als Leitfaden für den Unterricht in höheren Schulen109,95 €
- Maria HasseZum Begriff des allgemeinen Produkts von Kategorien109,95 €
- J. GötzSammlung von Lehrsätzen, Formeln und Aufgaben aus der Arithmetik, Algebra und allgemeinen Größenlehre109,95 €
- Hermann SchubertHermann Schubert: Aufgaben aus der Arithmetik und Algebra für Real- und Bürgerschulen. Heft 1109,95 €
-
-
-
Produktdetails
- Produktdetails
- Verlag: De Gruyter
- 1971.
- Seitenzahl: 156
- Erscheinungstermin: 14. Januar 1971
- Deutsch
- Abmessung: 236mm x 160mm x 15mm
- Gewicht: 343g
- ISBN-13: 9783112531815
- ISBN-10: 3112531817
- Artikelnr.: 63185735
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Verlag: De Gruyter
- 1971.
- Seitenzahl: 156
- Erscheinungstermin: 14. Januar 1971
- Deutsch
- Abmessung: 236mm x 160mm x 15mm
- Gewicht: 343g
- ISBN-13: 9783112531815
- ISBN-10: 3112531817
- Artikelnr.: 63185735
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
16. Adjungierte Funktoren.- 16.1 Komposition von Funktoren und natürlichen Transformationen.- 16.2 Äquivalenzen von Kategorien.- 16.3 Skelette.- 16.4 Adjungierte Funktoren.- 16.5 Quasi-inverse Adjunktions-Transformationen.- 16.6 Völlig treue Adjungierte.- 16.7 Tensorprodukte.- 17. Adjungierte Funktorpaare zwischen Funktorkategorien.- 17.1 Die Konstruktion von Kan.- 17.2 Dichte Funktoren.- 17.3 Charakterisierung der Yoneda-Einbettung.- 17.4 Kleine projektive Objekte.- 17.5 Endlich erzeugte Objekte.- 17.6 Natürliche Transformationen mit Parametern.- 17.7 Tensorprodukte über kleinen Kategorien.- 17.8 Verwandte des Tensorprodukts.- 18. Grundzüge der Universellen Algebra.- 18.1 Algebraische Theorien.- 18.2 Yoneda-Einbettung und freie Algebren.- 18.3 Unteralgebren und Covollständigkeit.- 18.4 Differenzcokerne und Kernpaare.- 18.5 Algebraische Funktoren und Linksadjungierte.- 18.6 Semantik und Struktur.- 18.7 Kronecker-Produkt.- 18.8 Charakterisierung algebraischer Kategorien.- 19. Kalkül von Brüchen.- 19.1 Kategorien von Brüchen.- 19.2 Kalkül von Linksbrüchen.- 19.3 Zerlegung von Funktoren und Saturation.- 19.4 Beziehungen zu Unterkategorien.- 19.5 Additivität und Exaktheit.- 19.6 Lokalisation in abelschen Kategorien.- 19.7 Charakterisierung der Grothendieck-Kategorien mit Generator.- 20. Grothendieck-Topologien.- 20.1 Siebe und Topologien.- 20.2 Bedeckende Morphismen und Garben.- 20.3 Zu einer Prägarbe assoziierte Garbe.- 20.4 Erzeugung von Topologien.- 20.5 Prätopologien.- Literatur.
16. Adjungierte Funktoren.- 16.1 Komposition von Funktoren und natürlichen Transformationen.- 16.2 Äquivalenzen von Kategorien.- 16.3 Skelette.- 16.4 Adjungierte Funktoren.- 16.5 Quasi-inverse Adjunktions-Transformationen.- 16.6 Völlig treue Adjungierte.- 16.7 Tensorprodukte.- 17. Adjungierte Funktorpaare zwischen Funktorkategorien.- 17.1 Die Konstruktion von Kan.- 17.2 Dichte Funktoren.- 17.3 Charakterisierung der Yoneda-Einbettung.- 17.4 Kleine projektive Objekte.- 17.5 Endlich erzeugte Objekte.- 17.6 Natürliche Transformationen mit Parametern.- 17.7 Tensorprodukte über kleinen Kategorien.- 17.8 Verwandte des Tensorprodukts.- 18. Grundzüge der Universellen Algebra.- 18.1 Algebraische Theorien.- 18.2 Yoneda-Einbettung und freie Algebren.- 18.3 Unteralgebren und Covollständigkeit.- 18.4 Differenzcokerne und Kernpaare.- 18.5 Algebraische Funktoren und Linksadjungierte.- 18.6 Semantik und Struktur.- 18.7 Kronecker-Produkt.- 18.8 Charakterisierung algebraischer Kategorien.- 19. Kalkül von Brüchen.- 19.1 Kategorien von Brüchen.- 19.2 Kalkül von Linksbrüchen.- 19.3 Zerlegung von Funktoren und Saturation.- 19.4 Beziehungen zu Unterkategorien.- 19.5 Additivität und Exaktheit.- 19.6 Lokalisation in abelschen Kategorien.- 19.7 Charakterisierung der Grothendieck-Kategorien mit Generator.- 20. Grothendieck-Topologien.- 20.1 Siebe und Topologien.- 20.2 Bedeckende Morphismen und Garben.- 20.3 Zu einer Prägarbe assoziierte Garbe.- 20.4 Erzeugung von Topologien.- 20.5 Prätopologien.- Literatur.