39,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Deep Convolutional Neural Networks oder einfach Convolutional Neural Networks (CNN) sind in letzter Zeit zu einem der leistungsfähigsten und ausdrucksstärksten Lernmodelle für die Bildmustererkennung, die medizinische Bildverarbeitung, die Computer Vision, die Erkennung handschriftlicher/optischer Zeichen usw. geworden, die die Klassifizierungsaufgaben sowohl binär als auch kategorisch auf effiziente und einfache Weise durchführen können. Neben der breiten Anwendung in verschiedenen Bereichen und Domänen hat es heutzutage eine hohe Popularität und Anerkennung im Bereich der medizinischen…mehr

Produktbeschreibung
Deep Convolutional Neural Networks oder einfach Convolutional Neural Networks (CNN) sind in letzter Zeit zu einem der leistungsfähigsten und ausdrucksstärksten Lernmodelle für die Bildmustererkennung, die medizinische Bildverarbeitung, die Computer Vision, die Erkennung handschriftlicher/optischer Zeichen usw. geworden, die die Klassifizierungsaufgaben sowohl binär als auch kategorisch auf effiziente und einfache Weise durchführen können. Neben der breiten Anwendung in verschiedenen Bereichen und Domänen hat es heutzutage eine hohe Popularität und Anerkennung im Bereich der medizinischen Wissenschaft erlangt, da verschiedene medizinische Berichte heutzutage sehr zuverlässig auf der Deep Learning-basierten Bilderkennung basieren. In diesem Buch haben wir ein Deep Structured Neural Network Model, im Grunde ein CNN-Modell, auf einem großen Datensatz von Röntgenbildern namens MURA (Musculoskeletal Radiographs Abnormality) trainiert und versucht, die Abnormalitäten eines Röntgenbildes(ob ein Bild normal oder abnormal ist) auf der Grundlage binärer Klassifikationen vorherzusagen.
Autorenporträt
El Dr. Mahesh Jangid es profesor asociado del Departamento de Ciencias e Ingeniería Informática de la Universidad de Manipal, Jaipur, y cuenta con 11 años de experiencia en la enseñanza y la investigación en prestigiosas instituciones académicas. Tiene un historial académico impecable y un gran interés por la investigación. Está cualificado para GATE, SET y NET.