Knowledge Modelling and Big Data Analytics in Healthcare
Advances and Applications
Herausgeber: Mehta, Mayuri; Chatterjee, Indranath; Passi, Kalpdrum
Knowledge Modelling and Big Data Analytics in Healthcare
Advances and Applications
Herausgeber: Mehta, Mayuri; Chatterjee, Indranath; Passi, Kalpdrum
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector,…mehr
Andere Kunden interessierten sich auch für
- Big Data Analytics in Supply Chain Management227,99 €
- Big Data and Computational Intelligence in Networking73,99 €
- Big Data and Computational Intelligence in Networking217,99 €
- Maxine ChenMastering Data Science and Big Data Analytics19,99 €
- William D. MawbyNavigating Big Data Analytics42,99 €
- Ms. GEETHA P.Privacy Protection in Big Data Analytics41,99 €
- Kiran ChaudharyBig Data Analytics51,99 €
-
-
-
Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- Seitenzahl: 364
- Erscheinungstermin: 22. Dezember 2021
- Englisch
- Abmessung: 240mm x 161mm x 24mm
- Gewicht: 710g
- ISBN-13: 9780367696610
- ISBN-10: 0367696614
- Artikelnr.: 62267588
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: CRC Press
- Seitenzahl: 364
- Erscheinungstermin: 22. Dezember 2021
- Englisch
- Abmessung: 240mm x 161mm x 24mm
- Gewicht: 710g
- ISBN-13: 9780367696610
- ISBN-10: 0367696614
- Artikelnr.: 62267588
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Mayuri Mehta is a passionate learner, teacher and researcher. She is working as a Professor in the Department of Computer Engineering, Sarvajanik College of Engineering and Technology, Surat, India. She received her Ph.D. in Computer Engineering from Sardar Vallabhbhai National Institute of Technology (SVNIT), India. Her areas of teaching and research include Data Science, Machine Learning & Deep Learning, Health Informatics, Computer Algorithms, and Python Programming. She has worked on several academic assignments in collaboration with professors of universities across the globe. Her 20 years of professional experience includes several academic and research achievements along with administrative and organizational capabilities. She has also co-edited a book titled "Tracking and Preventing Diseases using Artificial Intelligence". With the noble intention of applying her technical knowledge for societal impact, she is working on several research projects in the Healthcare domain in association with doctors doing private practice and doctors of Medical Colleges, which reflect her research outlook. She is an active member of professional bodies such as IEEE, Computer Society of India (CSI) and Indian Society for Technical Education (ISTE). Kalpdrum Passi received his Ph.D. in Parallel Numerical Algorithms from Indian Institute of Technology, Delhi, India in 1993. He is an Associate Professor, Department of Mathematics & Computer Science, at Laurentian University, Ontario, Canada. He has published many papers on Parallel Numerical Algorithms in international journals and conferences. He has collaborative work with faculty in Canada and US and the work was tested on the CRAY XMP's and CRAY YMP's. He transitioned his research to web technology, and more recently has been involved in machine learning and data mining applications in bioinformatics, social media and other data science areas. His research in bioinformatics has been on improving the accuracy of predicting diseases such as different types of cancer using microarray data. He has published several papers related to prediction of cancer using microarray data and epigenomic data. He obtained funding from NSERC and Laurentian University for his research. He is a member of the ACM and IEEE Computer Society. Indranath Chatterjee is working as a Professor in the Department of Computer Engineering at Tongmyong University, Busan, South Korea. He received his Ph. D. in Computational Neuroscience from the Department of Computer Science, University of Delhi, Delhi, India. His research areas include Computational Neuroscience, Medical Imaging, Data Science, Machine Learning, and Computer Vision. He is the author of four textbooks on computer science and published numerous scientific articles in renowned international journals and conferences. He is currently serving as a Chief Section Editor of the Neuroscience Research Notes journal and serving as a member of the Advisory board and Editorial board of various international journals and Open-Science organizations worldwide. He is presently working on several projects of government & non-government organizations as PI/co-PI, related to medical imaging and machine learning for a broader societal impact, in collaboration with more than 15 universities globally. He is an active professional member of the Association of Computing Machinery (ACM, USA), Organization of Human Brain Mapping (OHBM, USA), Federations of European Neuroscience Society (FENS, Belgium), International Association of Neuroscience (IAN, India), and International Neuroinformatics Coordinating Facility (INCF, Sweden). Rajan Patel is currently working as a Professor at Gandhinagar Institute of Technology, Gandhinagar, Gujarat, India. He received a Ph.D. degree in Computer Engineering from R. K. University, Rajkot, India and M.Tech. in Computer Engineering from S. V. National Institute of Technology (NIT), Surat, India. He has more than 16 years of teaching experience in the field of Computer Science and Engineering and research experience mainly in the domain of Networking, Security and Intelligent Applications. He has more than 51 collaborative publications in journals and conferences, and presented 17 articles in National/International conferences including IEEE, Science Direct, Springer, Elsevier. As a coauthor, he has published an edited International book entitled "Data Science and Intelligent Applications" in Springer's LNDECT series. He also worked for ISEAP sponsored MHRD funded project during his Post graduation period at NIT, Surat, India. He is a member of professional bodies CSI, ISTE and UACEE. He has also received numerous awards, honors and certificates of excellence. His main area of interest includes AI, Data Science, and Intelligent Communication and its Security.
Section I: Big Data in Healthcare. 1. Healthcare Systems: A Design Overview
of System and Technology. 2. An Overview of Big Data Applications in
Healthcare: Opportunities and Challenges. 3. Clinical Decision Support
Systems and Computational Intelligence for Healthcare Industry. 4. Proposed
Intelligent Software System for Healthcare Systems using Machine Learning.
Section II: Medical Imaging. 5. Diagnosis of Schizophrenia: A Study on
Clinical and Computational Aspect. 6. Artificial Intelligence in Medical
Imaging. 7. Integrated Neuroinformatics: Analytics and Application. 8. A
Computer detection system (CDS) for fast and quick detection of lung cancer
using Digital Image Processing. Section III: Computational Genomics. 9.
Improved Prediction of Gene Expression of Epigenomics Data of Lung Cancer
Using Machine Learning and Deep Learning Models. 10. Genetic Study of
Schizophrenia and Role of Computational Genomics in Mental Healthcare. 11.
Prediction of disease-lncRNA associations via Machine Learning and Big Data
approaches. Section IV: Applications on Clinical Diagnosis. 12. On Tracking
Slow modulations of Effective Connectivity for Early Detection of Epilepsy:
Methods. 13. Application to Predict Type-II Diabetes using IoT Rural
Healthcare Monitoring System. Section V: Issues in Security and Informatics
in Healthcare. 14. A conceptual model for assessing security and privacy
risks in healthcare information infrastructures: the CUREX approach. 15.
Data science in health informatics.
of System and Technology. 2. An Overview of Big Data Applications in
Healthcare: Opportunities and Challenges. 3. Clinical Decision Support
Systems and Computational Intelligence for Healthcare Industry. 4. Proposed
Intelligent Software System for Healthcare Systems using Machine Learning.
Section II: Medical Imaging. 5. Diagnosis of Schizophrenia: A Study on
Clinical and Computational Aspect. 6. Artificial Intelligence in Medical
Imaging. 7. Integrated Neuroinformatics: Analytics and Application. 8. A
Computer detection system (CDS) for fast and quick detection of lung cancer
using Digital Image Processing. Section III: Computational Genomics. 9.
Improved Prediction of Gene Expression of Epigenomics Data of Lung Cancer
Using Machine Learning and Deep Learning Models. 10. Genetic Study of
Schizophrenia and Role of Computational Genomics in Mental Healthcare. 11.
Prediction of disease-lncRNA associations via Machine Learning and Big Data
approaches. Section IV: Applications on Clinical Diagnosis. 12. On Tracking
Slow modulations of Effective Connectivity for Early Detection of Epilepsy:
Methods. 13. Application to Predict Type-II Diabetes using IoT Rural
Healthcare Monitoring System. Section V: Issues in Security and Informatics
in Healthcare. 14. A conceptual model for assessing security and privacy
risks in healthcare information infrastructures: the CUREX approach. 15.
Data science in health informatics.
Section I: Big Data in Healthcare. 1. Healthcare Systems: A Design Overview
of System and Technology. 2. An Overview of Big Data Applications in
Healthcare: Opportunities and Challenges. 3. Clinical Decision Support
Systems and Computational Intelligence for Healthcare Industry. 4. Proposed
Intelligent Software System for Healthcare Systems using Machine Learning.
Section II: Medical Imaging. 5. Diagnosis of Schizophrenia: A Study on
Clinical and Computational Aspect. 6. Artificial Intelligence in Medical
Imaging. 7. Integrated Neuroinformatics: Analytics and Application. 8. A
Computer detection system (CDS) for fast and quick detection of lung cancer
using Digital Image Processing. Section III: Computational Genomics. 9.
Improved Prediction of Gene Expression of Epigenomics Data of Lung Cancer
Using Machine Learning and Deep Learning Models. 10. Genetic Study of
Schizophrenia and Role of Computational Genomics in Mental Healthcare. 11.
Prediction of disease-lncRNA associations via Machine Learning and Big Data
approaches. Section IV: Applications on Clinical Diagnosis. 12. On Tracking
Slow modulations of Effective Connectivity for Early Detection of Epilepsy:
Methods. 13. Application to Predict Type-II Diabetes using IoT Rural
Healthcare Monitoring System. Section V: Issues in Security and Informatics
in Healthcare. 14. A conceptual model for assessing security and privacy
risks in healthcare information infrastructures: the CUREX approach. 15.
Data science in health informatics.
of System and Technology. 2. An Overview of Big Data Applications in
Healthcare: Opportunities and Challenges. 3. Clinical Decision Support
Systems and Computational Intelligence for Healthcare Industry. 4. Proposed
Intelligent Software System for Healthcare Systems using Machine Learning.
Section II: Medical Imaging. 5. Diagnosis of Schizophrenia: A Study on
Clinical and Computational Aspect. 6. Artificial Intelligence in Medical
Imaging. 7. Integrated Neuroinformatics: Analytics and Application. 8. A
Computer detection system (CDS) for fast and quick detection of lung cancer
using Digital Image Processing. Section III: Computational Genomics. 9.
Improved Prediction of Gene Expression of Epigenomics Data of Lung Cancer
Using Machine Learning and Deep Learning Models. 10. Genetic Study of
Schizophrenia and Role of Computational Genomics in Mental Healthcare. 11.
Prediction of disease-lncRNA associations via Machine Learning and Big Data
approaches. Section IV: Applications on Clinical Diagnosis. 12. On Tracking
Slow modulations of Effective Connectivity for Early Detection of Epilepsy:
Methods. 13. Application to Predict Type-II Diabetes using IoT Rural
Healthcare Monitoring System. Section V: Issues in Security and Informatics
in Healthcare. 14. A conceptual model for assessing security and privacy
risks in healthcare information infrastructures: the CUREX approach. 15.
Data science in health informatics.