79,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Wechselkursprognosen gelten als äußerst problematisch. Künstliche Neuronale Netze werden in solch schwierigen Fällen häufig eingesetzt, denn sie bieten sich an, um nichtlineare Zusammenhänge im ökonomischen Kontext zu untersuchen. Allerdings können einzelne Künstliche Neuronale Netze ihrer Aufgabe oft nicht gerecht werden.
Frank Richter zeigt, dass sich bessere Prognosen erstellen lassen, wenn statt eines einzelnen Modells eine Modellkombination verwendet wird, die die Stärken einzelner Modelle nutzt, ihre Schwächen hingegen weitestgehend ausschaltet. Er präsentiert Möglichkeiten der
…mehr

Produktbeschreibung
Wechselkursprognosen gelten als äußerst problematisch. Künstliche Neuronale Netze werden in solch schwierigen Fällen häufig eingesetzt, denn sie bieten sich an, um nichtlineare Zusammenhänge im ökonomischen Kontext zu untersuchen. Allerdings können einzelne Künstliche Neuronale Netze ihrer Aufgabe oft nicht gerecht werden.

Frank Richter zeigt, dass sich bessere Prognosen erstellen lassen, wenn statt eines einzelnen Modells eine Modellkombination verwendet wird, die die Stärken einzelner Modelle nutzt, ihre Schwächen hingegen weitestgehend ausschaltet. Er präsentiert Möglichkeiten der Kombination Künstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen. Es zeichnet sich ab, dass für Wechselkursprognosen die Verwendung einer adäquaten Nutzenfunktion eine wichtige Rolle spielt.

Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Frank Richter promovierte bei Prof. Dr. Heinz Schaefer am Institut für Konjunktur und Strukturforschung der Universität Bremen. Er ist als Spezialist im Bereich analytischer Anwendungen tätig.