Marktplatzangebote
2 Angebote ab € 62,78 €
  • Broschiertes Buch

Künstliche Neuronale Netze (KNN) avancierten in der Finanzanalyse und -prognose in den letzten Jahren zu einem wissenschaftlichen Mode- und Reizthema gleichermaßen. Nach einer Darstellung des Backpropagation Algorithmus erfolgt die Konzeption einer deterministischen, iterativen Vorgehensweise zur Generierung eines neuronalen Prognosemodells. Der Real-World-Bezug entsteht durch Simulationsstudien, auf deren Basis die Prognoseleistung der KNN mit jüngeren Verfahren aus der Zeitreihenanalyse (Kointegration und Fehlerkorrekturmodelle) zur DM/US-$-Wechselkursprognose kritisch verglichen und…mehr

Produktbeschreibung
Künstliche Neuronale Netze (KNN) avancierten in der Finanzanalyse und -prognose in den letzten Jahren zu einem wissenschaftlichen Mode- und Reizthema gleichermaßen. Nach einer Darstellung des Backpropagation Algorithmus erfolgt die Konzeption einer deterministischen, iterativen Vorgehensweise zur Generierung eines neuronalen Prognosemodells. Der Real-World-Bezug entsteht durch Simulationsstudien, auf deren Basis die Prognoseleistung der KNN mit jüngeren Verfahren aus der Zeitreihenanalyse (Kointegration und Fehlerkorrekturmodelle) zur DM/US-$-Wechselkursprognose kritisch verglichen und evaluiert werden soll. Dazu erfolgt ein Performance-Vergleich von statistischen, neuro-statistischen und neuronalen Fehlerkorrekturmodellen. Den theoretischen Rahmen bilden traditionelle und moderne Wechselkurstheorien. Im Rahmen der komparativen Analyse werden Leistungsfähigkeit und Grenzen der neuronalen Prognose-Tools evident.
Autorenporträt
Der Autor: Thomas Zimmerer wurde 1966 in Mainburg geboren. 1988 bis 1993 Studium der Betriebswirtschaftslehre an der Universität Regensburg und der University of Colorado at Boulder, USA. Von 1994 bis 1997 wissenschaftlicher Mitarbeiter am Lehrstuhl für Ökonometrie an der Universität Regensburg. 1997 Promotion.