A large number of wrappers generate tables without column names for human consumption because the meaning of the columns are apparent from the context and easy for humans to understand, but in emerging applications, labels are needed for autonomous assignment and schema mapping where machine tries to understand the tables. Autonomous label assignment is critical in volume data processing where ad hoc mediation, extraction and querying is involved. We propose an algorithm Lads for Labeling Anonymous Datasets, which can holistically label/annotate tabularWeb document. The algorithm has been tested on anonymous datasets from a number of sites, yielding very promising results.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.