76,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

In light of increasing human-induced global climate change, there is a greater need for clean energy resources and zero carbon projects. This new volume offers up-to-date coverage of the fundamentals as well as recent advancements in energy efficient thermal energy storage materials, their characterization, and technological applications. Thermal energy storage (TES) systems offer very high-energy savings for many of our day-to-day applications and could be a strong component for enhancing the usage of renewable/clean energy-based devices. Because of its beneficial environmental impact, this…mehr

Produktbeschreibung
In light of increasing human-induced global climate change, there is a greater need for clean energy resources and zero carbon projects. This new volume offers up-to-date coverage of the fundamentals as well as recent advancements in energy efficient thermal energy storage materials, their characterization, and technological applications. Thermal energy storage (TES) systems offer very high-energy savings for many of our day-to-day applications and could be a strong component for enhancing the usage of renewable/clean energy-based devices. Because of its beneficial environmental impact, this technology has received wide attention in the recent past, and dedicated research efforts have led to the development of novel materials, as well to innovative applications in very many fields, ranging from buildings to textile, healthcare to agriculture, space to automobiles. This book offers a valuable and informed systematic treatment of latent heat-based thermal energy storage systems, covering current energy research and important developmental work.
Autorenporträt
Amritanshu Shukla, PhD, is Associate Professor in Physics at the Rajiv Gandhi Institute of Petroleum Technology (RGIPT), where he is Head of the Division of Basic Sciences and Humanities and Chief Vigilance Officer. He has published more than 100 research papers in various international journals and conference proceedings. He has also written several international books and has delivered invited talks at national and international institutes. Dr. Shukla is also involved with several national as well as international projects and active research collaborations in India and abroad. Atul Sharma, PhD, is Associate Professor at the Rajiv Gandhi Institute of Petroleum Technology, Uttar Pradesh, India, and is conducting research at the institute¿s Non-Conventional Energy Laboratory. Dr. Sharma has recently published an edited book as well as research papers in various international journals and conferences. He also holds several patents related to the PCM technology in the Taiwan region and is currently engaged with the Council of Science & Technology. In addition, he has served as an editorial board member and as a reviewer for many national and international journals, project reports, and book chapters. Pascal Henry Biwolé, PhD, is Professor at the Université Clermont Auvergne and Research Associate at MINES ParisTech Graduate School, Center for Processes, Renewable Energies and Energy Systems, Paris, France. His research interests are the modeling of heat and mass transfers in building innovative envelopes and systems, the modeling of phase change materials and aerogel-based insulating materials for energy applications, and the development of 3D particle tracking velocimetry for airflow study in buildings. He teaches on thermal energy storage, heat and mass transfers, fluid dynamics, and environmental building design and modeling.