63,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
32 °P sammeln
  • Broschiertes Buch

Les itérations chaotiques, un outil issu des mathématiques discrètes, sont pour la première fois étudiées pour obtenir de la divergence et du désordre. Après avoir utilisé les mathématiques discrètes pour en déduire des situations de non convergence, ces itérations sont modélisées sous la forme d'un système dynamique et sont étudiées topologiquement dans le cadre de la théorie mathématique du chaos. Nous prouvons que leur adjectif « chaotique » a été bien choisi: ces itérations sont du chaos aux sens de Devaney, Li-Yorke, l'expansivité, l'entropie topologique et l'exposant de Lyapunov, etc.…mehr

Produktbeschreibung
Les itérations chaotiques, un outil issu des mathématiques discrètes, sont pour la première fois étudiées pour obtenir de la divergence et du désordre. Après avoir utilisé les mathématiques discrètes pour en déduire des situations de non convergence, ces itérations sont modélisées sous la forme d'un système dynamique et sont étudiées topologiquement dans le cadre de la théorie mathématique du chaos. Nous prouvons que leur adjectif « chaotique » a été bien choisi: ces itérations sont du chaos aux sens de Devaney, Li-Yorke, l'expansivité, l'entropie topologique et l'exposant de Lyapunov, etc. Ces propriétés ayant été établies pour une topologie autre que la topologie de l'ordre, les conséquences de ce choix sont discutées. Nous montrons alors que ces itérations chaotiques peuvent être portées telles quelles sur ordinateur, sans perte de propriétés, et qu'il est possible de contourner le problème de la finitude des ordinateurs pour obtenir des programmes aux comportements prouvés chaotiques selon Devaney, etc. Cette manière de faire est respectée pour générer un algorithme de tatouage numérique et une fonction de hachage chaotiques au sens le plus fort qui soit.
Autorenporträt
Né le 25 avril 1977, Christophe Guyeux est agrégé de mathématiques et docteur ès informatique. Il est actuellement Maître de Conférence au Département Informatique des Systèmes Complexes (DISC) de l'Institut Franche-Comté Electronique, Mécanique, Thermique et Optique - Sciences et Technologie (femto-st, CNRS UMR 6174).