Governments of many countries consider the electrification of individual passenger transport as a suitable strategy to decrease oil dependency and reduce transport-related carbon dioxide (CO2) and air pollutant emissions. However, battery-electric vehicles (BEVs) and plug-in hybrid-electric vehicles (PHEVs) have been more expensive than their conventional counterparts and suffer from relatively short electric driving ranges, which still hampers the market potential of these vehicles. Despite persisting shortfalls, mechanisms such as technological learning and economics of scale promise to improve the techno-economic performance of BEVs and PHEVs in the short- to mid-term.
Here, the author seeks to obtain insight into the techno-economic prospects of BEVs and PHEVs by: (i) establishing experience curves and (ii) quantifying user costs and the costs of mitigating carbon dioxide and air pollutant emissions in a time-series analysis. The analysis captures the situation in Germany between 2010 and 2016.
Here, the author seeks to obtain insight into the techno-economic prospects of BEVs and PHEVs by: (i) establishing experience curves and (ii) quantifying user costs and the costs of mitigating carbon dioxide and air pollutant emissions in a time-series analysis. The analysis captures the situation in Germany between 2010 and 2016.