- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides students an accessible reference for engaging with the building blocks of digital logic design.
Andere Kunden interessierten sich auch für
- Gaurav VermaSolidWorks Electrical 2022 Black Book (Colored)87,99 €
- Akin ArikanCustomer Experience Analytics174,99 €
- Micro-Assembly Technologies and Applications119,99 €
- Three Dimensional System Integration37,99 €
- Mira RubinInteractive Indesign CC187,99 €
- Bing LuLayout Optimization in VLSI Design118,99 €
- Analog Circuit Design158,99 €
-
-
-
This book provides students an accessible reference for engaging with the building blocks of digital logic design.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: River Publishers
- Seitenzahl: 248
- Erscheinungstermin: 27. Juli 2023
- Englisch
- Abmessung: 234mm x 156mm x 18mm
- Gewicht: 567g
- ISBN-13: 9788770223614
- ISBN-10: 8770223610
- Artikelnr.: 67822350
- Verlag: River Publishers
- Seitenzahl: 248
- Erscheinungstermin: 27. Juli 2023
- Englisch
- Abmessung: 234mm x 156mm x 18mm
- Gewicht: 567g
- ISBN-13: 9788770223614
- ISBN-10: 8770223610
- Artikelnr.: 67822350
Pinaki Mazumder is currently a Professor with the Department of Electrical Engineering and Computer Science, University of Michigan (UM), Ann Arbor. He was for six years with industrial R&D centers that included AT&T Bell Laboratories, where in 1985 he started the CONES Project the first C modeling-based very large scale integration (VLSI) synthesis tool at India's premier electronics company, Bharat Electronics, Ltd, India. Here, he developed several high-speed and high-voltage analog integrated circuits intended for consumer electronics products. He is the author or coauthor of more than 200 technical papers and four books on various aspects of VLSI research works. His current research interests include current problems in nanoscale CMOS VLSI design, computer-aided design tools, and circuit designs for emerging technologies, including quantum MOS and resonant tunneling devices, semiconductor memory systems, and physical synthesis of VLSI chips. Dr. Mazumder is a Fellow of the American Association for the Advancement of Science (2008). He is a recipient of the Digitals Incentives for Excellence Award, BF Goodrich National Collegiate Invention Award, and Defense Advanced Research Projects Agency Research Excellence Award. Idongesit E. Ebong, Ph.D. is a patent agent at Nixon Peabody in Chicago. He practices in the technical areas of electrical, computer, and mechanical engineering. He received his Ph.D. degree in electrical engineering from the University of Michigan, Ann Arbor. His research areas included digital/analog integrated circuit design, focused primarily on non-traditional devices like memristors and tunneling transistors for low power applications. Leveraging his background, he helps clients protect inventions in computer architecture and networks, digital and analog circuits, software systems, microfabrication equipment design, MEMS sensors, machine learning, and telecommunications.
1. Introduction 2. Numeral Systems and BCD Codes 3. Boolean Algebra and
Logic Gates 4. Timing Diagrams 5. Boolean Algebra and Logic Gates: Part I
6. Combinational Logic Design Techniques: Part II 7. Combinational Logic
Minimization 8. Combinational Building Blocks 9. Foundations of Sequential
Design: Part I 10. Foundations of Sequential Design: Part II
Logic Gates 4. Timing Diagrams 5. Boolean Algebra and Logic Gates: Part I
6. Combinational Logic Design Techniques: Part II 7. Combinational Logic
Minimization 8. Combinational Building Blocks 9. Foundations of Sequential
Design: Part I 10. Foundations of Sequential Design: Part II
1. Introduction 2. Numeral Systems and BCD Codes 3. Boolean Algebra and
Logic Gates 4. Timing Diagrams 5. Boolean Algebra and Logic Gates: Part I
6. Combinational Logic Design Techniques: Part II 7. Combinational Logic
Minimization 8. Combinational Building Blocks 9. Foundations of Sequential
Design: Part I 10. Foundations of Sequential Design: Part II
Logic Gates 4. Timing Diagrams 5. Boolean Algebra and Logic Gates: Part I
6. Combinational Logic Design Techniques: Part II 7. Combinational Logic
Minimization 8. Combinational Building Blocks 9. Foundations of Sequential
Design: Part I 10. Foundations of Sequential Design: Part II