K3 surfaces are central objects in mathematics and connect to string theory in physics. By studying the many rich aspects of these surfaces, this book surveys powerful techniques in algebraic geometry. Working from the basics to recent breakthroughs, it is suitable as a graduate text and reference for researchers.
K3 surfaces are central objects in mathematics and connect to string theory in physics. By studying the many rich aspects of these surfaces, this book surveys powerful techniques in algebraic geometry. Working from the basics to recent breakthroughs, it is suitable as a graduate text and reference for researchers.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Daniel Huybrechts is a professor at the Mathematical Institute of the University of Bonn. He previously held positions at the Université Denis Diderot Paris 7 and the University of Cologne. He is interested in algebraic geometry, particularly special geometries with rich algebraic, analytic, and arithmetic structures. His current work focuses on K3 surfaces and higher dimensional analogues. He has published four books.
Inhaltsangabe
Preface 1. Basic definitions 2. Linear systems 3. Hodge structures 4. Kuga-Satake construction 5. Moduli spaces of polarised K3 surfaces 6. Periods 7. Surjectivity of the period map and Global Torelli 8. Ample cone and Kähler cone 9. Vector bundles on K3 surfaces 10. Moduli spaces of sheaves on K3 surfaces 11. Elliptic K3 surfaces 12. Chow ring and Grothendieck group 13. Rational curves on K3 surfaces 14. Lattices 15. Automorphisms 16. Derived categories 17. Picard group 18. Brauer group.
Preface 1. Basic definitions 2. Linear systems 3. Hodge structures 4. Kuga-Satake construction 5. Moduli spaces of polarised K3 surfaces 6. Periods 7. Surjectivity of the period map and Global Torelli 8. Ample cone and Kähler cone 9. Vector bundles on K3 surfaces 10. Moduli spaces of sheaves on K3 surfaces 11. Elliptic K3 surfaces 12. Chow ring and Grothendieck group 13. Rational curves on K3 surfaces 14. Lattices 15. Automorphisms 16. Derived categories 17. Picard group 18. Brauer group.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826