This 2006 book gives a self-contained and comprehensive introduction to free probability theory and has its main focus on the combinatorial aspects. It can be used as a textbook for an introductory graduate level course, and is also well-suited for the individual study of free probability.
This 2006 book gives a self-contained and comprehensive introduction to free probability theory and has its main focus on the combinatorial aspects. It can be used as a textbook for an introductory graduate level course, and is also well-suited for the individual study of free probability.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Alexandru Nica is a Professor of Mathematics at the University of Waterloo, Ontario.
Inhaltsangabe
Part I. Basic Concepts: 1. Non-commutative probability spaces and distributions 2. A case study of non-normal distribution 3. C*-probability spaces 4. Non-commutative joint distributions 5. Definition and basic properties of free independence 6. Free product of *-probability spaces 7. Free product of C*-probability spaces Part II. Cumulants: 8. Motivation: free central limit theorem 9. Basic combinatorics I: non-crossing partitions 10. Basic Combinatorics II: Möbius inversion 11. Free cumulants: definition and basic properties 12. Sums of free random variables 13. More about limit theorems and infinitely divisible distributions 14. Products of free random variables 15. R-diagonal elements Part III. Transforms and Models: 16. The R-transform 17. The operation of boxed convolution 18. More on the 1-dimensional boxed convolution 19. The free commutator 20. R-cyclic matrices 21. The full Fock space model for the R-transform 22. Gaussian Random Matrices 23. Unitary Random Matrices Notes and Comments Bibliography Index.
Part I. Basic Concepts: 1. Non-commutative probability spaces and distributions 2. A case study of non-normal distribution 3. C*-probability spaces 4. Non-commutative joint distributions 5. Definition and basic properties of free independence 6. Free product of *-probability spaces 7. Free product of C*-probability spaces Part II. Cumulants: 8. Motivation: free central limit theorem 9. Basic combinatorics I: non-crossing partitions 10. Basic Combinatorics II: Möbius inversion 11. Free cumulants: definition and basic properties 12. Sums of free random variables 13. More about limit theorems and infinitely divisible distributions 14. Products of free random variables 15. R-diagonal elements Part III. Transforms and Models: 16. The R-transform 17. The operation of boxed convolution 18. More on the 1-dimensional boxed convolution 19. The free commutator 20. R-cyclic matrices 21. The full Fock space model for the R-transform 22. Gaussian Random Matrices 23. Unitary Random Matrices Notes and Comments Bibliography Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826