Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm.…mehr
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Carl Ludwig Siegel was born on December 31, 1896 in Berlin. He studied mathematics and astronomy in Berlin and Göttingen and held chairs at the Universities of Frankfurt and Göttingen before moving to the Institute for Advanced Study in Princeton in 1940. He returned to Göttingen in 1951 and died there in 1981.Siegel was one of the leading mathematicians of the twentieth century, whose work, noted for its depth as well as breadth, ranged over many different fields such as number theory from the analytic, algebraic and geometrical points of view, automorphic functions of several complex variables, symplectic geometry, celestial mechanics.
Inhaltsangabe
Contents: Minkowski's Two Theorems.- Linear Inequalities.- Theory of Reduction.- Lecture XV.- References.- Index.
I Minkowski's Two Theorems.- Lecture I.- Lecture II.- Lecture III.- Lecture IV.- II Linear Inequalities.- Lecture V.- Lecture VI.- Lecture VII.- Lecture VIII.- Lecture IX.- III Theory of Reduction.- Lecture X.- Lecture XI.- Lecture XII.- Lecture XIII.- Lecture XIV.- Lecture XV.- References.