42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

In this book, a new pixel configuration RGBW, consisting of red (R), green (G), blue (B), and white (W) LEDs, is employed and investigated for color generation. Energy consumption and various hues of new pixels are compared to standard pixels consisting of RGB LEDs. Human perception experiments are conducted in order to study the perceptual difference between the two architectures when the same colors are generated using RGBW vs. RGB. Power measurements for an 8x8 pixel LED display has demonstrated up to 49% power savings for gray scale, over 30% power savings for low saturated colors, and up…mehr

Produktbeschreibung
In this book, a new pixel configuration RGBW, consisting of red (R), green (G), blue (B), and white (W) LEDs, is employed and investigated for color generation. Energy consumption and various hues of new pixels are compared to standard pixels consisting of RGB LEDs. Human perception experiments are conducted in order to study the perceptual difference between the two architectures when the same colors are generated using RGBW vs. RGB. Power measurements for an 8x8 pixel LED display has demonstrated up to 49% power savings for gray scale, over 30% power savings for low saturated colors, and up to 12% for high saturated colors using RGBW as an alternative. Furthermore, human perception studies has shown that vast majority of test subjects could not distinguish between most colors displayed using RGB and RGBW showing that RGBW is an excellent substitute for RGB. Statistics has shown that 44% of test subjects found the colors in gray scale to be the same, whereas 82% and 95% of test subject found low saturated colors and high saturated, respectively, colors to be identical.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Neveen's research interests are Photonics, Hybrid Dynamical Systems, Feed-Back Controls, and Intelligent transportation Systems. She is currently pursuing her PhD in Electrical Engineering and Masters in Mathematics. Her latest research is focused on theoretical and scientific development of complex networks and transportation problems.